25 resultados para steel protection
em Aquatic Commons
Resumo:
Nearly 10,000 mechanised fishing trawlers mostly built of wood and about 100 trawlers built of steel besides a few fiberglass reinforced plastic and a couple of ferro-cement boats constitute the modern fishing fleet of India at present. Metallic corrosion in sea water is a very well-known phenomenon in all ships and various other marine structures; the exact financial loss and the material breakdowns have never been fully realized among the trawler owners in India. The Central Institute of Fisheries Technology at Cochin has been studying these problems for some years and has been able to assess the significance of underwater corrosion particularly of the hull below water line in the trawlers and suitable remedial measures have been suggested in this paper.
Resumo:
The development of a new mercury-free ternary aluminum anode (CIFTAL) for cathodic protection of marine structures is described. The new anode demonstrated a current efficiency of 83.5% to 85.4% in a current density range of 5.6 to 166.7 mAdmˉ². The current efficiency remained practically stable at 1.4 mAdmˉ² over a test period of 300 days. The service trials of the anode on steel trawlers and aluminum (Indal M 57 S) sheathed wooden boats have shown satisfactory performance in terms of uniform dissolution, current efficiency and driving voltage. In the wake of legislations restricting the use of anodes containing mercury in an endeavor to control the mercury pollution of the near shore aquatic environment, the new anode (CIFTAL) with its stable current output and high current efficiency merits significance in marine cathodic protection.
Resumo:
v.1 - Text and Summaries (272 page document)
Resumo:
(1 poster)
Resumo:
pdf has 37p.
Resumo:
This report outlines the potential impacts of coastal protection structures on the resources of the Monterey Bay National Marine Sanctuary. At least 15 miles of the Sanctuary’s 300-mile shoreline are currently armored with seawalls and riprap revetments. Most of these coastal protection structures are placed above the mean high tide line, the official boundary of the Sanctuary, yet some influences of armoring impinge on the marine realm and on recreational use. In addition, continued sea level rise and accompanying coastal retreat will force many of these structures below the high tide line over time. The Monterey Bay National Marine Sanctuary staff has recognized the significance of coastal armoring, identifying it as a critical issue in the Coastal Armoring Action Plan of the draft Joint Management Plan. This summary is intended to provide general background information for Sanctuary policies on coastal armoring. The impacts discussed include: aesthetic depreciation, beach loss due to placement, access restriction, loss of sand supply from eroding cliffs, passive erosion, and active erosion. In addition, the potential biological impacts are explored. Finally, an appraisal of how differing armor types compare in relation to impacts, expense and engineering is presented. While the literature cited in this report focus predominantly on the California coast, the framework for this discussion could have implications for other actively eroding coastlines. (PDF contains 26 pages.)
Resumo:
Some 25 to 30 yr ago, when we as students were beginning our respective careers and were developing for the first time our awareness of marine mammals in the waters separating western North America from eastern Asia, we had visions of eventually bridging the communication gap which existed between our two countries at that time. Each of us was anxious to obtain information on the distribution, biology, and ecological relations of "our" seals and walruses on "the other side," beyond our respective political boundari~s where we were not permitted to go to study them. We were concerned that the resource management practices on the other side of the Bering and Chukchi Seas, implemented in isolation, on a purely unilateral basis, might endanger the species which we had come to know and were striving to conserve. At once apparent to both of us was the need for free exchange of biological information between our two countries and, ultimately, joint management of our shared resources. In a small way, we and others made some initial efforts to generate that exchange by personal correspondence and through vocal interchange at the annual meetings of the North Pacific Fur Seal Commission. By the enabling Agreement on Cooperation in the Field of Environmental Protection, reached between our two countries in 1972, our earlier visions at last came true. Since that time, within the framework of the Marine Mammal Project under Area V of that Agreement, we and our colleagues have forged a strong bond of professional accord and respect, in an atmosphere of free intercommunication and mutual understanding. The strength and utility of this arrangement from the beginning of our joint research are reflected in the reports contained in this, the first compendium of our work. The need for a series of such a compendia became apparent to us in 1976, and its implementation was agreed on by the regular meeting of the Project in La Jolla, Calif., in January 1977. Obviously, the preparation and publication of this first volume has been excessively delayed, in part by continuing political distrust between our governments but mainly by increasing demands placed on the time of the contributors. In this period of growing environmental concern in both countries, we and our colleagues have been totally immersed in other tasks and have experienced great difficulty in drawing together the works presented here. Much of the support for doing so was provided by the State of Alaska, through funding for Organized Research at the University of Alaska-Fairbanks. For its ultimate completion in publishable form we wish to thank Helen Stockholm, Director of Publications, Institute of Marine Science, University of Alaska, and her staff, especially Ruth Hand, and the numerous referees narned herein who gave willingly oftheir time to review each ofthe manuscripts critically and to provide a high measure of professionalism to the final product. (PDF file contains 110 pages.)
Resumo:
Approximately two-thirds of coastal and Great Lakes states have some type of shoreline construction setback or construction control line requiring development to be a certain distance from the shoreline or other coastal feature (OCRM, 2008). Nineteen of 30 coastal states currently use erosion rates for new construction close to the shoreline. Seven states established setback distances based on expected years from the shoreline: the remainder specify a fixed setback distance (Heinz Report, 2000). Following public hearings by the County of Kauai Planning Commission and Kauai County Council, the ‘Shoreline Setback and Coastal Protection Ordinance’ was signed by the Mayor of Kauai on January 25, 2008. After a year of experience implementing this progressive, balanced shoreline setback ordinance several amendments were recently incorporated into the Ordinance (#887; Bill #2319 Draft 3). The Kauai Planning Department is presently drafting several more amendments to improve the effectiveness of the Ordinance. The intent of shoreline setbacks is to establish a buffer zone to protect shorefront development from loss due to coastal erosion - for a period of time; to provide protection from storm waves; to allow the natural dynamic cycles of erosion and accretion of beaches and dunes to occur; to maintain beach and dune habitat; and, to maintain lateral beach access and open space for the enjoyment of the natural shoreline environment. In addition, a primary goal of the Kauai setback ordinance is to avoid armoring or hardening of the shore which along eroding coasts has been documented to ultimately eliminate the fronting beach. (PDF contains 4 pages)
Resumo:
The aim of this paper is to summarize the present legislation aimed at protecting freshwater species in Britain, and briefly to review its effectiveness. Some areas have been deliberately omitted, such as fisheries legislation designed to conserve stocks, and the statutory protection of birds associated with fresh waters which forms a large subject area in its own right.
Resumo:
During the months of June through September in 1991 and 1992, 71 shark longlines were fished in the Chesapeake Bight region ofthe U.S. mid-Atlantic coast with a combination of rope/steel (Yankee) and monofilament gangions. A total of 288 sharks were taken on 3,666 monofilament gangions, and 352 sharks were caught on 6,975 Yankee gangions. Catch rates between gear types differed by depth strata, by month, and by species. Analyses were divided between efforts in the nursery ground ofthe sandbar shark, Carcharhinus plumbeus, in Chesapeake Bay and efforts outside the Bay. Mean catch per unit effort (CPUE) ± SE, as sharks caught per 100 hooks fished, was significantly (P<0.05) lower for Yankee gangions. Mean CPUE's for sandbar sharks in the nursery ground were 20.6 ± 3.8 for Yankee gangions and 26.0 ± 3.0 for monofilament gangions, and mean CPUE's for all species combined outside the Bay were 3.7 ± 0.7 for Yankee gangions, and 6.9 ± 1.2 for monofilament gangions.