8 resultados para spatiotemporal epidemic prediction model
em Aquatic Commons
Resumo:
A density prediction model for juvenile brown shrimp (Farfantepenaeus aztecus) was developed by using three bottom types, five salinity zones, and four seasons to quantify patterns of habitat use in Galveston Bay, Texas. Sixteen years of quantitative density data were used. Bottom types were vegetated marsh edge, submerged aquatic vegetation, and shallow nonvegetated bottom. Multiple regression was used to develop density estimates, and the resultant formula was then coupled with a geographical information system (GIS) to provide a spatial mosaic (map) of predicted habitat use. Results indicated that juvenile brown shrimp (<100 mm) selected vegetated habitats in salinities of 15−25 ppt and that seagrasses were selected over marsh edge where they co-occurred. Our results provide a spatially resolved estimate of high-density areas that will help designate essential fish habitat (EFH) in Galveston Bay. In addition, using this modeling technique, we were able to provide an estimate of the overall population of juvenile brown shrimp (<100 mm) in shallow water habitats within the bay of approximately 1.3 billion. Furthermore, the geographic range of the model was assessed by plotting observed (actual) versus expected (model) brown shrimp densities in three other Texas bays. Similar habitat-use patterns were observed in all three bays—each having a coefficient of determination >0.50. These results indicate that this model may have a broader geographic application and is a plausible approach in refining current EFH designations for all Gulf of Mexico estuaries with similar geomorphological and hydrological characteristics.
Resumo:
This thesis considers a three- dimensional numerical model based on 3-D Navier— Stokes and continuity equations involving various wind speeds (North west), water surface levels, horizontal shier stresses, eddy viscosity, densities of oil and gas condensate- water mixture flows. The model is used to simulate the prediction of the surface movement of oil and gas condensate slicks from spill accident in the north coasts of Persian Gulf.
Resumo:
As defined, the modeling procedure is quite broad. For example, the chosen compartments may contain a single organism, a population of organisms, or an ensemble of populations. A population compartment, in turn, could be homogeneous or possess structure in size or age. Likewise, the mathematical statements may be deterministic or probabilistic in nature, linear or nonlinear, autonomous or able to possess memory. Examples of all types appear in the literature. In practice, however, ecosystem modelers have focused upon particular types of model constructions. Most analyses seem to treat compartments which are nonsegregated (populations or trophic levels) and homogeneous. The accompanying mathematics is, for the most part, deterministic and autonomous. Despite the enormous effort which has gone into such ecosystem modeling, there remains a paucity of models which meets the rigorous &! validation criteria which might be applied to a model of a mechanical system. Most ecosystem models are short on prediction ability. Even some classical examples, such as the Lotka-Volterra predator-prey scheme, have not spawned validated examples.
Resumo:
Mathematical models for heated water outfalls were developed for three flow regions. Near the source, the subsurface discharge into a stratified ambient water issuing from a row of buoyant jets was solved with the jet interference included in the analysis. The analysis of the flow zone close to and at intermediate distances from a surface buoyant jet was developed for the two-dimensional and axisymmetric cases. Far away from the source, a passive dispersion model was solved for a two dimensional situation taking into consideration the effects of shear current and vertical changes in diffusivity. A significant result from the surface buoyant jet analysis is the ability to predict the onset and location of an internal hydraulic jump. Prediction can be made simply from the knowledge of the source Froude number and a dimensionless surface exchange coefficient. Parametric computer programs of the above models are also developed as a part of this study. This report was submitted in fulfillment of Contract No. 14-12-570 under the sponsorship of the Federal Water Quality Administration.
Resumo:
During the last century, the population of Pacific sardine (Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly different between spring and summer, indicating that they are representative of the entire stock. The results also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes.
Resumo:
Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.
Resumo:
We report a Monte Carlo representation of the long-term inter-annual variability of monthly snowfall on a detailed (1 km) grid of points throughout the southwest. An extension of the local climate model of the southwestern United States (Stamm and Craig 1992) provides spatially based estimates of mean and variance of monthly temperature and precipitation. The mean is the expected value from a canonical regression using independent variables that represent controls on climate in this area, including orography. Variance is computed as the standard error of the prediction and provides site-specific measures of (1) natural sources of variation and (2) errors due to limitations of the data and poor distribution of climate stations. Simulation of monthly temperature and precipitation over a sequence of years is achieved by drawing from a bivariate normal distribution. The conditional expectation of precipitation. given temperature in each month, is the basis of a numerical integration of the normal probability distribution of log precipitation below a threshold temperature (3°C) to determine snowfall as a percent of total precipitation. Snowfall predictions are tested at stations for which long-term records are available. At Donner Memorial State Park (elevation 1811 meters) a 34-year simulation - matching the length of instrumental record - is within 15 percent of observed for mean annual snowfall. We also compute resulting snowpack using a variation of the model of Martinec et al. (1983). This allows additional tests by examining spatial patterns of predicted snowfall and snowpack and their hydrologic implications.
Resumo:
The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribution, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been the subject of scientific study because they are being threatened by a growing number of anthropogenic stressors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem components. The present study helps to address this need by examining the distribution of mesophotic corals in the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions create patches of comparatively warm, calm, clear waters that remain relatively stable through time. Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 georeferenced records containing information about mesophotic coral occurrence and 34 environmental predictors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were randomly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum number of correctly predicted presence and absence records intersected on each ROC curve. Permutation importance and jackknife analysis were used to quantify the contribution of each environmental variable to the four ensemble models.