69 resultados para spatial variables

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the spatial patterns in green sea urchin (Strongylocentrotus droebachiensis) density off the coast of Maine, using data from a fishery-independent survey program, to estimate the exploitable biomass of this species. The dependence of sea urchin variables on the environment, the lack of stationarity, and the presence of discontinuities in the study area made intrinsic geostatistics inappropriate for the study; therefore, we used triangulated irregular networks (TINs) to characterize the large-scale patterns in sea urchin density. The resulting density surfaces were modified to include only areas of the appropriate substrate type and depth zone, and were used to calculate total biomass. Exploitable biomass was estimated by using two different sea urchin density threshold values, which made different assumptions about the fishing industry. We observed considerable spatial variability on both small and large scales, including large-scale patterns in sea urchin density related to depth and fishing pressure. We conclude that the TIN method provides a reasonable spatial approach for generating biomass estimates for a fishery unsuited to geostatistics, but we suggest further studies into uncertainty estimation and the selection of threshold density values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North American weevil ( Euhrychiopsis lecontei (Dietz)) is being considered as a biological control agent for Eurasian watermilfoil ( Myriophyllum spicatum L.). This native insect damages watermilfoil plants and is frequently associated with declining watermilfoil populations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the course of an eight year monitoring effort, the Wisconsin Department of Natural Resources documented a significant decline in milfoil biomass and distribution in Fish Lake, Wisconsin. Average milfoil biomass declined by 40- 50% from 374-524 g dw m -2 during 1991-93 to 265 g dw m -2 during both 1994 and 1995. Milfoil recovered fully in 1996- 98 to 446- 564 g dw m -2 . The size of the milfoil bed, as discerned from aerial photographs, shrank from a maximum coverage of 40 ha in 1991 to less than 20 ha during 1995. During the “crash” of 1994-95, milfoil plants exhibited typical signs of weevil-induced damage, including darkened, brittle, hollowed-out growing tips, and the arching and collapse of stems associated with loss of buoyancy. Monitoring of weevils and stem damage during 1995-98 showed highest densities and heaviest damage occurred near shore and subsequently fanned out into deeper water from core infestation sites each spring. The extent of milfoil stem damage was positively correlated with weevil densities (monthly sampling). However, weevil densities and stem damage were lower during 1995 (when milfoil biomass was in decline) than during 1996-98 (when milfoil biomass was fully recovered).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During October, 1972 the Patuxent River Estuary was monitored intensively and synoptically over two tidal cycles to determine the spatial and temporal patterns of various hydrodynamic, chemical and biological features. Forty-one depths at eleven stations along nine transects were sampled simultaneously at hourly intervals for salinity, temperature, dissolved oxygen, chlorohyll a, particulate nitrogen, nitrate, nitrite, total kjeldahl nitrogen, ammonia, particulate carbohydrate, dissolved organic carbon, total hydrolizable phosphorous, dissolved inorganic phosphorous, suspended sediment, particle size distribution, and zooplankton. Tidal velocity was continuously monitored at each depth by recording current meters. Riverine input and meteorological conditions were relatively stable for two weeks preceeding the deployment. This communication describes the calculation of the intrinsic rates of change of the observed variables from their measured distributions in the Estuary. The steady-state, one-dimensional equation of species continuity is employed to separate the advection and tidal dispersion of a hydrodynamically passive substance frbm its intrinsic rate of change at point. A new spatial transform is introduced for the purpose of interpolation and extrapolation of data.The intrinsic rate of change profiles reveal a region of heavy bloom activity in the upper estuary and a secondary bloom near the point in the River that most of the suspended material settles out. The changes in ammonia and nitrates are highly correlated to the productivity patterns. Phosphorous rates are less closely correlated to productivity. The perturbations that the Chalk Point steam electric power plant have on the heat and oxygen balances are easily discernible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of studies was initiated to assess the condition of benthic macroinfauna and chemical contaminant levels in sediments and biota of the Gray’s Reef National Marine Sanctuary (GRNMS) and nearby shelf waters off the coast of Georgia. Four key objectives of the research are (1) to document existing environmental conditions within the sanctuary in order to provide a quantitative benchmark for tracking any future changes due to either natural or human disturbances; (2) to examine broader cross-shelf spatial patterns in benthic fauna and sediment contaminant concentrations and to identify potential controlling factors associated with the observed patterns; (3) to assess any between-year temporal variability in benthic fauna; and (4) to evaluate the importance of benthic fauna as prey for higher trophic levels. Such questions are being addressed to help fulfill long-term science and management goals of the GRNMS. However, it is anticipated that the information will be of additional value in broadening our understanding of the surrounding South Atlantic Bight (SAB) ecosystem and in bringing the knowledge to bear on related resourcemanagement issues of the region. We have begun to address the first three of these objectives with data from samples collected in spring 2000 at stations within GRNMS, and in spring 2001 at stations within the sanctuary and along three cross-shelf transects extending from the mouths of Sapelo, Doboy, and Altamaha Sounds out to sanctuary depths (about 17-20 m). This report provides a description of baseline conditions within the sanctuary, based on results of the spring 2000 survey (Section II), and uses data from both 2000 and 2001 to examine overall spatial and temporal patterns in biological and chemical variables within the sanctuary and surrounding inner-shelf environment (Section III). (PDF contains 65 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between 1994 and 1997, 258 tissue and 178 sediment samples were analyzed for chlorpyrifos throughout the coastal United States and the Great Lakes. Subsequently, 95 of the 1997 tissue samples were reanalyzed for endosulfan. Tissue chlorpyrifos concentrations, which exceeded the 90th percentile, were found in coastal regions known to have high agricultural use rates but also strongly correlated with sites near high population. The highest concentrations of endosulfans in contrast, were generally limited to agricultural regions of the country. Detections of chlorpyrifos at several Alaskan sites suggest an atmospheric transport mechanism. Many Great Lakes sites had chlorpyrifos tissue concentrations above the 90th percentile which decreased with increasing distance from the Corn Belt region (Iowa, Indiana, Illinois, and Wisconsin) where most agriculturally applied chlorpyrifos is used. Correlation analysis suggests that fluvial discharge is the primary transport pathway on the Atlantic and Gulf of Mexico coasts for chlorpyrifos but not necessarily for endosulfans. (PDF contains 28 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: An average of 78 m. of water was vertically displaced by wind-driven upwelling during the dry season (January-April) in Panama Bay at the head of the Gulf of Panama. The standing crop of phytoplankton and its productivity were significantly greater during the months of upwelling than during the rainy season. Equivalent results were found by three different methods used to calculate photosynthesis: direct measurement with radiocarbon; increase of dissolved oxygen in the water column; and decrease of phosphate-phosphorus in the water column. About 90 g. of carbon per square meter of sea surface were fixed by the phytoplankton during each upwelling season (January-April) and about 90 g. of carbon were fixed during each rainy season (May-December) resulting in an annual production of about 180 g. of carbon per square meter of sea surface SPANISH: Un promedio de 78 m. de agua fué desplazado verticalmente por la fuerza de los vientos que ocasionan el fenómeno conocido por afloramiento durante la estación seca (enero a abril) en la Bahía de Panamá, a la cabeza del Golfo de Panamá. La cosecha estable de fitoplancton y su productividad fueron significativamente mayores durante los meses de afloramiento, que durante la estación lluviosa. Se obtuvieron resultados equivalentes por medio de tres diferentes métodos usados para calcular la fotosíntesis: medición directa con radiocarbono, aumento del oxígeno disuelto en la columna de agua, y disminución del fosfato-fósforo en la columna de agua. Por medio del fitoplancton durante cada estación de afloramiento (enero-abril), se fijaron alrededor de 90 g. de carbono por metro cuadrado de la superficie del mar, y durante cada estación lluviosa (mayo-diciembre) se fijaron 90 g. de carbono lo que resulta en una producción anual de aproximadamente 180 g. de carbono por metro cuadrado de la superficie del mar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.)