5 resultados para single operation cycle
em Aquatic Commons
Resumo:
Aquaculture systems are an integral element of rural development and therefore should be environment friendly as well as socially and economically designed. From the economic standpoint, one of the major constraints for the development of sustainable aquaculture includes externalities generated by competition in access to a limited resource. This study was conducted as an investigation into the water requirement for the hatchery and nursery production phases of common carp, Cyprinus carpio (Linnaeus, 1758) at the Maharashtra State Fish Seed Farm at Khopoli in Raigad Dist. of Maharashtra during the winter months from November to February. The water budgeting study involves the quantification of water used in every stage of production in hatchery and nursery systems and aimed at becoming a foundation for the minimization of water during production without affecting the yield; thereby conserving water and upholding the theme of sustainable aquaculture. The total water used in a single operation cycle was estimated to be 11,25,040 L [sic]. Out of the total water consumed, 4.74% water was used in the pre-operational management steps, 4.48% was consumed during breeding, 62.72% was consumed in the hatching phase, 21.50% was used for hatchery rearing and 6.56% was consumed during conditioning. In the nursery ponds, the water gain was primarily the regulated inflow coming through the irrigation channel. The total quantum of water used in the nursery rearing was 31,60,800 L [sic]. The initial filling and regulated inflow formed 42.60% and 57.40% respectively of water gain, while evaporation, seepage and discharge contributed 20.71%, 36.46% and 42.82% respectively to the water loss. The total water expended for the entire operation was 1,21,61,120 L [sic]. Water expense occurred to produce a single spawn in the hatchery system was calculated and found to be 0.56 L while the water expended to produce one fry was calculated as 4.86 L. The study fulfills the hydrological equation described by Winter (1981) and Boyd (1985). It also validates the water budget simulation model that can be used for forecasting water requirements for aquaculture ponds (Nath and Bolte, 1998).
Resumo:
An attempt was made to study the input-output relationships and economics of pangas monoculture and carp-pangas polyculture in Bangladesh. By analyzing the data collected from 50 pangas farms and 55 carp-pangas farms, the study has investigated the production systems of two technologies and the effects of fingerling stocking and applications of feed and fertilizer on fisheries income. The data were collected from the fishermen of Trishal and Bhaluka of Mymensingh district, and Kahaloo and Adamdighee of Bogra district during 2001-02. For pangas monoculture, the stocking density was 31,561 per ha while it was 55,017 per ha in carp-pangas polyculture. Most of the farmers used urea, TSP and lime before stocking. Rice and wheat bran happened to be the most common feed ingredients for both types of culture in general. Other important ingredients used were mustard oil-cakes, rice polish, wheat flour, fish meal, bone meal, soybean meal and poultry litter. In terms of quantities, rice bran and wheat bran dominated the farmers list. Rice and wheat bran together constituted about 60% of all studied feeds. Feed cost constituted 59.13% of total costs for pangas monoculture and 67.44% for carp-pangas polyculture. Per ha productions of pangas and carp-pangas in a single culture cycle were 15,508 kg and 19,745 kg, respectively. Per ha gross profits were estimated to be Tk 310,311 and Tk 464,418 for pangas monoculture and carp-pangas polyculture, respectively. Net profit appeared to be Tk 264,216 per ha for pangas monoculture and Tk 416,509 per ha for carp-pangas polyculture. The BCRs calculated were 1.46 and 1.68 for monoculture and polyculture, respectively. The break-even costs per kg of fish were estimated at Tk 36.93 for pangas and Tk 30.93 for mixed species which was much lower than the prices the producers received. Break-even productions were estimated at 10,702 kg per ha for pangas monoculture and 11,784 kg per ha for carp-pangas polyculture. Fingerling and feed cost, and pond size significantly explained the variation of income from pangas monoculture. These factors have significantly influenced the income from the crop. Functional analysis shows that 1% increase in the feed cost might increase 0.51% of pangas income and 0.41% in carp-pangas income. No other inputs had shown this much of responses to increasing income from a fish.
Resumo:
Due to inadequacies of previous underwater towing techniques and the special needs of a recent underwater survey, a modified mania-board technique was developed. With this new technique, the diver holds on to the manta-board with one arm; consequently, the board is referred to as a single-armed manta-board (sam-board). The sam-board proved inexpensive and highly maneuverable, allowing the divers to freely collect samples or record information. Through some experimenting with the board and changing some of the variables, such as rope lengths, towing speeds, etc., a highly efficient towing method can be achieved. Preplanning and strict diving safety procedures must, however, be implemented to assure efficiency. This paper presents the materials, guidelines for board construction, equipment, and preplanning and diving safety procedures necessary for the sam-board towing operation.
Resumo:
Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.
Resumo:
The monthly average temperatures at Puttalam Lagoon, Dutch Bay, Portugal Bay towards Kovilmunai and Portugal Bay towards Pallugaturai showed a distinct annual cycle. The peak was in April and values gradually fell till September. There was a further gradual fall in temperature from October to January. The highest temperatures in all four stations were in April. The highest salinities in all the stations were from May to October i.e., during the south-west monsoon. The salinities at Dutch Bay and Portugal Bay were high in March and April corresponding to the highest temperatures reached during these months. Two maxima have been observed in phytoplankton production. A primary maximum in May-June and a secondary maximum in October. The primary and secondary maxima are due to the influx of nutrient laden waters from the rivers Kal Aru and Pomparippu Aru. The phytoplankton producing blooms were Rhizosolenia alata. Rhizosolenia imbricata, Chaetoceros lascinosus, Chaetoceros pervianus, Ch,aetoceros diversus, Coscinodiscus gigas, Thallasionema nitzschioides, Thalassiosira subtilis, Thallassiothrix frauenfeldii, Asterionella japonica, Sceletonema costatum, Bacteriastrum varians and Biddulphia sinensis. Sudden outbursts of a single species were common. These diatoms were species of Chaetoceros and Rhizosolenia, and Thallassiothrix frauenfeldii. Wide fluctuations have been observed in the distribution of phytoplankton but no definite conclusions can be drawn as the period of observation was only one year.