3 resultados para sibling
em Aquatic Commons
Resumo:
Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region, respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and 6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei = 0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini (sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym) and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given.
Resumo:
Major histocompatibility complex genes are thought to be involved in allogeneic graft rejection but not many reports are available on their functional analysis in fish. Analysis of available sequences of MHC genes suggests functions in antigen presentation similar to those found in higher vertebrates. In mammals, the MHC class I and class II molecules are major determinants of allogeneic graft rejection due to their polymorphism in conjunction with their antigen presenting function. In fish, MHC class H molecules are found to be involved in rejection of allogeneic scale grafts. The present study was designed to investigate the involvement of MHC class I molecules in allograft rejection. Erythrocytes were collected from donors of rainbow trout expressed different class MHC class I alleles, stained with two dyes, mixed and grafted to the recipients that were of the same sibling group as the donors. The grafts were rejected by allogeneic recipients and the MHC class I linkage group was the major determinant for the rejection.