5 resultados para secure platform
em Aquatic Commons
Resumo:
In February 2006, an Alternative Platform Observer Program (APP) was implemented in North Carolina (NC) to observe commercial gillnet trips by small vessels [<24 ft (7.2 m)] in nearshore waters out to three nm (5.6 km). Efforts began with outreach to the fishing industry while simultaneously gathering information to be incorporated in a Database of Fishermen. From 30 March 2006 through 31 March 2007, 36 trips were observed. Observed trips of the NC nearshore gillnet fishery targeted seven species: kingfish (Menticirrhus spp.), Spanish mackerel (Scomberomorus maculatus), spiny dogfish (Squalus acanthias), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion nebulosus), striped bass (Morone saxatilis), and weakfish (Cynoscion regalis). Of the 36 trips, 20 (55.6%) were with vessels that were new to the Northeast Fisheries Observer Program (NEFOP), having never carried an observer. Based on the landings data for small vessels from North Carolina Division of Marine Fisheries (NCDMF), the APP has achieved 10.1% coverage by number of trips and 4.0% by pounds landed. No incidental takes of bottlenose dolphins were observed by the APP, although bottlenose dolphins were sighted during 19 (52.8%) observed trips. The APP has drastically increased the number of observed trips of small vessels in the nearshore waters of NC. When combined with trips observed by NEFOP (n=205), the APP resulted in a 15.6% increase in the number of observed gillnet trips. (PDF contains 34 pages)
Resumo:
Satellite telemetry is a common tool for examining sea turtle movements, and many research programs have successfully tracked adults. Relatively short satellite track durations recorded for juvenile Kemp’s ridley sea turtles, Lepidochelys kempii, in the northwestern Gulf of Mexico raised questions regarding premature transmission loss. We examined interactions between juvenile sea turtles outfitted with platform terminal transmitters (PTT’s) and turtle excluder devices (TED’s) and the potential for transmission loss due to this interaction. A pilot study was conducted with eight 34-month-old, captive-reared loggerhead sea turtles, Caretta caretta; a larger trial the following year used twenty 34-month-olds. Half of the turtles in each trial were outfitted with dummy PTT’s (8×4×2 cm), and all turtles were sent through a trawl equipped with a bottom-opening Super-Shooter TED. No apparent damage was sustained by any PTT, but four of five PTT-outfitted loggerheads encountering the TED carapace-first exhibited increased escape times when the PTT wedged between the TED deflector bars (10.2 cm apart). Overall, 15 loggerheads (54%) impacted the TED carapace-first. Attachment of PTT’s to smaller sea turtles may slow or, in worst cases, inhibit escape from TED’s. Likewise, loose or poorly secured PTT’s could impede escape or be shed during such an interaction. Researchers tracking small turtles in or near regions with trawling activity should consider PTT size and shape and the combined PTT/adhesive profile to minimize potentially detrimental interactions with TED’s.