16 resultados para scientific knowledge
em Aquatic Commons
Resumo:
In 2004, Congress reauthorized the Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 with the Harmful Algal Bloom and Hypoxia Amendments Act (HABHRCA 2004). The 2004 legislation required the generation of five reports, including this "Scientific Assessment of Freshwater Harmful Algal Blooms." HABHRCA 2004 stipulates that this report 1) examine the causes, consequences, and economic costs of freshwater HABs, 2) establish priorities and guidelines for a research program on freshwater HABs, and 3) make recommendations to improve coordination among Federal agencies with respect to research on HABs in freshwater environments. This report is divided into five chapters: Chapter 1 provides the legislative background and process for developing the report, Chapter 2 describes the problem of freshwater and inland HABs in the United States, Chapter 3 outlines the current Federal efforts in freshwater and inland HAB research and response, Chapter 4 discusses the future research priorities, and Chapter 5 delineates opportunities for coordination to advance research efforts. The document is based, in large part, on the proceedings (Hudnell 2008) of the International Symposium on Cyanobacterial Harmful Algal Blooms, a meeting convened by EPA and sponsored by a variety of Federal agencies, to describe current scientific knowledge and identify priorities for future research on CyanoHABs. This report offers a plan for coordinating the important research that is currently ongoing in the United States and for guiding future research directions for Federal programs as well as for state, local, private, and academic institutions in order to maximize advancements. To this end, the Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health (IWG-4H) identifies seven priorities, all of equal weight, for freshwater HAB research and response. These priorities represent research areas where there is the greatest potential for progress in freshwater HAB research. This report does not attempt to assess the relative importance of freshwater HAB research compared to other research areas or other priorities for Federal or state investment.
Resumo:
Davidson Seamount is one of the largest seamounts in U.S. waters and the first to be characterized as a “seamount.” In 2002 and 2006, the Monterey Bay National Marine Sanctuary (MBNMS) led two multi-institutional expeditions to characterize the geology and natural history of Davidson Seamount. Results from these expeditions to Davidson Seamount are adding to the scientific knowledge of seamounts, including the discovery of new species. In November 2008, the MBNMS boundary was expanded to include the Davidson Seamount. In addition, a management plan for Davidson Seamount was created to develop resource protection, education, and research strategies for the area. The purpose of this taxonomic guide is to create an inventory of benthic and mid-water organisms observed at the Davidson Seamount to provide a baseline taxonomic characterization. At least 237 taxa were observed and are presented in this guide; including 15 new or undescribed species (8 sponges, 3 corals, 1 ctenophore, 1 nudibranch, 1 polychaete, 1 tunicate) recently or currently being described by taxonomic experts. This is the first taxonomic guide to Davidson Seamount, and is intended to be revised in the future as we learn more about the seamount and the organisms that live there. (PDF has 145 pages.)
Resumo:
In this era of proliferating scientific information it is difficult to keep up with the literature, even in one's own field. Review articles are helpful in summarizing the status of knowledge. In oyster biology, several such published reviews have been of great help to working scientists. The outstanding contributions that come to' mind are those by Baughman (1948), Korringa (1952), Joyce (1972), Breisch and Kennedy (1980), and Kennedy and Breisch (198 I). If done well, such compilations serve as checkpoints, eliminating or vastly reducing the need to consult the literature in detail. On Long Island, New York, where the hard clam Mercenaria mercenaria is the major commercial resource, we have felt the need for some time for a compendium of knowledge on this important mollusk. Several years ago my secretary, students, and I began to gather materials for an annotated bibliography. We have already published a collection of 2233 titles (McHugh et al. 1982), nearly all accompanied by abstracts, and in this publication we have added another 460. The experience has been rewarding. We have been surprised at the extent of the literature, much of it only remotely related to the shellfish industry itself, but nevertheless throwing light on the biology, physiology, and many other aspects of the scientific knowledge of hard clams. The following bibliography is divided into three parts. Part I comprises the bulk of the bibliography, while Parts 2 and 3 contain additional titles that we decided to include during editing, submission, and approval of the manuscript for publication. All three parts are indexed together, however. We also reexamined those titles in the previous bibliography (McHugh et al. 1982) which did not include abstracts. These are included in Parts 2 and 3 of this bibliography. Most of these contained no specific reference to Mercenaria mercenaria. A few searches were terminated for various reasons. (PDF file contains 66 pages.)
Resumo:
The present document represents a synthesis of the scientific knowledge gathered by the CRO in the years 1985-1990, and related to the proliferation of aquatic macrophytes, commonly called floating aquatic weeds, in the Ebrié lagoon.
Resumo:
Recent years have seen a dramatic increase in litigation against the National Marine Fisheries Service, NOAA. Litigation may affect personnel throughout the agency, including scientists, whose work is often directly or indirectly influenced by complex legal requirements, but who may not be in a position to comment or engage in public dialogue. It may be helpful for scientists and other agency personnel to join the ongoing discussion in the legal community regarding the interface of science and law. This paper provides a starting point with a selected introduction to relevant legal literature in this area. It uses the phrase “forensic fisheries science” to describe the application of science to legal requirements in the fishery management context. It concludes with suggestions for future research that could assist NMFS scientists as they grapple with the challenge of using science to help the agency meet its complex legal requirements. Forensic: belonging to, used in, or suitable to courts of judicature or to public discussion and debate; argumentative, rhetorical; relating to or dealing with the application of scientific knowledge to legal problems (Merriam-Webster Online Dictionary )
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
There is nothing mysterious about how coastal rivers, their estuaries, and their relationship with the sea all work to satisfy many of our greatest needs, including drinkable water, fish and shellfish, and soils essential for sustaining the production of food and fiber. Nor are the methods that have proved successful in the protection and restoration of watershed health difficult to understand. It is difficult, however, to imagine how we are to survive without healthy watersheds. Each watershed along California’s coast shows signs of increasing abuse from road construction and maintenance, livestock grazing, residential development, timber harvesting, and a dozen other human activities. In some cases whole streams have simply been wiped away. This document has been created to guide and support every person in the community, from homemaker to elected official, who wants her or his watershed to provide clean water, harvestable fish resources and other proof that life in the watershed cannot only be maintained but also enjoyed. It is based on years of experience with watershed protection and restoration in California. If citizen involvement is to be effective, it must draw not only on scientific knowledge but also on an understanding of how to translate individual views into commitments and capable group action. This guide briefly reviews the condition of California’s coastal watersheds, identifies the kinds of concerns that have led citizens to successful watershed protection efforts, explains why citizen, in addition to government, effort is essential for watershed protection and restoration to succeed, and puts in the reader’s hands both the technical and organizational “tools of the trade” in the hope that those who use this guide will be encouraged to join in efforts to make their watershed serve this and future generations better.
Resumo:
The worldwide shrimp landings in 1988 were reported to be 2.484.000 tons an increase of about 460.000 tons compared with 1985. The majority of shrimp fishing areas located in the tropical and sub-tropical regions with a contribution of more than 2 million tone. The most important species are the shallow water Penaeid shrimps. This quantity of about 2.5 million tons represents approximately 3% of the world marine catch. In terms of value, it represents almost 30% of the world trade in fish products. Main management objectives include: long term resources conservation; to maximize physical catches; to maximize the total income from catches or foreign exchange; to maximize economic profits; to reduce the shrimp by catch or improve its utilization; other social and economic interests. These objectives are in part interconnected and some are in conflict. Resource conservation is a basic condition for all other management objectives. Management policy definition should be in accordance with national goals and based on available scientific knowledge of the resources and of the fishing industry. The definition and selection of management objectives is an important process, to which the scientists must contribute the best way they can, mainly in providing the necessary information and options for management.
Resumo:
The report covers the status of: the economic and ecological values of Lake Victoria; priority issues; the vision of the Fisheries Research Component; the objectives of the Fisheries Research Component under LVEMP to generate, package and disseminate scientific knowledge and build capacity.
Resumo:
In Lake Victoria and other tropical inland water bodies, the study of secondary production has lagged behind other aquatic studies mainly because of inadequate research funding. Lack of basic scientific knowledge of such a major ecosystem component has greatly limited the understanding and management capacity of a vital regional fishery resource. This paper reviews the major roles played by various invertebrate organisms in the functioning of aquatic systems and the contribution of secondary production studies to fishery production assessment and management.
Resumo:
The major dangers facing the resources of the Great Lakes of Africa include over exploitation, falling species diversity, accumulating pollution, and a probable decline in fishery productivity. These dangers may be viewed as accentuated by: i) Inadequate scientific knowledge on the exploited resources ii) Reluctance to apply even the limited scientific information available, by fishery administrators iii) Constant increase in the demand for fish and other aquatic resources. iv) Lack of commitment to active collaboration and co-operation by riparian states regarding development and management of the shared resources. This paper discusses the above factors in relation to the dangerous trends facing the resources of the Great Lakes of Africa. The discussion is intended to contribute to the promotion of rational and sustainable utilisation of the aquatic resources of these lakes.
Resumo:
For the formulation of policies, laws and regulations for management of fisheries and aquatic systems there is a requirement for scientific knowledge to guide in this formulation. Such knowledge is used to guide in sustainable management of capture fisheries, integrating lake productivity processes into fisheries management, prevention of pollution and eutrophication of the aquatic environment, control of invasive weeds e.g. water hyacinth, enhancement of aquaculture production, reduction of post-harvest fish losses and ensuring fish quality, development of options for optimization of socio-economic benefits from fisheries and for co-management.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
The Scientific Forum on the Gulf of Mexico: The Islands in the Stream Concept took place in January 2008 in Sarasota, Florida. The purpose of the meeting was to bring together scientists and managers from around the Gulf of Mexico to discuss a range of topics on our knowledge of the Gulf of Mexico, from its geology to larger-scale connectivity to the Caribbean region, and their applications to the concept of a more integrated approach to area-based management. The forum included six panels of invited experts who spoke on the oceanographic and biological features in the Gulf of Mexico, including connections with Mexico and the Mesoamerican barrier reef system, and the legal and regulatory structure currently in place. The charge to the group was to share information, identify gaps in our knowledge, identify additional potential areas for protection, and discuss available science about connectivity and the potential value of establishing a marine protected area network in the Gulf of Mexico. (PDF has 108 pages.)