32 resultados para runoff processes
em Aquatic Commons
Resumo:
There has been a perception of increasing river channel instability in north west rivers and the River Lune in particular in recent decades. This has been attributed variously to: (a) long-term trends in precipitation-runoff regime; (b) changes in land-use such as moor-draining and sub-soil draining such that the river is more flashy than previously, and (c) a change in the magnitude-frequency relationships of flow such that high discharges are occurring with increased frequency. Resources are available in the form of rainfall and runoff records, archived information on channel planform, land use statistics and local engineering experience which have not been jointly and fully evaluated. Effective interpretation of the nature of channel change through time with respect to this resource may enhance the Environment Agency's ability to manage the river channel efficiently in the future and will aid the development of effective policy. The results of this study will for the first time, provide robust guidance with respect to long-term channel adjustment and the appropriate management options. The research provides suggestions as to how policy might be developed taking account of other pertinent factors.
Resumo:
The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)
Resumo:
(pdf contains 418 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
(PDF contains 114 pages)
Resumo:
Development pressure throughout the coastal areas of the United States continues to build, particularly in the southeast (Allen and Lu 2003, Crossett et al. 2004). It is well known that development alters watershed hydrology: as land becomes covered with surfaces impervious to rain, water is redirected from groundwater recharge and evapotranspiration to stormwater runoff, and as the area of impervious cover increases, so does the volume and rate of runoff (Schueler 1994, Corbett et al. 1997). Pollutants accumulate on impervious surfaces, and the increased runoff with urbanization is a leading cause of nonpoint source pollution (USEPA 2002). Sediment, chemicals, bacteria, viruses, and other pollutants are carried into receiving water bodies, resulting in degraded water quality (Holland et al. 2004, Sanger et al. 2008). (PDF contains 5 pages)
Resumo:
Research on the basic reproduction processes of Gammarus is summarized and reviewed, reproductive strategies in males and females being left to two later papers. The author describes the reproductive systems, the development of eggs (oocytes) in the ovaries, courtship and precopulatory amplexus, mating and the production of sperms, egg laying, mortality and diapause.
Resumo:
This partial translation of a longer article describes the phenomenon of ”Blasensand”. Blasensand is formed when sedimentation of dried out sand is suddenly flooded from above. A more detailed explanation of Blasensand is given in this translated part of the paper.
Resumo:
This short interim progress report builds on previous progress reports which have described the quantification of the process both within and between lakes of different degrees of eutrophication. These data indicated that slight changes in methodology, particularly when investigating sediment deposits, could grossly affect the measured activity. The aim of the present research was an attempt to rationalize these differences. If this could be achieved it would enable meaningful interpretation of published data obtained using different methods and therefore enlarge the available database. In addition some observations have been made on the production of nitrite by Grasmere profundal sediment slurries sampled during the circulation period.
Resumo:
This review is concerned with the kinetics of calcium carbonate formation and related processes which are important in many hard waters.
Resumo:
This project investigated the production of nitrate (nitrification) by bacteria in lakes. The work was undertaken as nitrification is a key process in the nitrogen cycle and previous estimates of rates of nitrification were unreliable. When different methods were used to estimate rates of nitrification within sediment deposits different results were obtained. Investigation' of specific aspects of these methodologies has allowed some rationalization of these observations and also enabled comparisons of previously published data which, beforehand, was not possible. However, it was not clear which methods gave the most reliable rate estimates. Calculation of a nitrate budget for Grasmere lake indicated that the use of methods which involved the mixing of surface sediments (and therefore disrupted preformed nutrient gradients) overestimated the rate of nitrification. The study concludes that slight changes in the method used to prepare sediment slurries can result in large changes, in the measured nitrifying activity. This makes comparisons between studies, using different methods, extremely difficult. Methods to study sediment nitrification processes which do not disrupt preformed substrate gradients within the sediment provide the most reliable rate estimates.
Resumo:
The processes which control the growth, composition, succession and loss from suspension of phytoplankton algae are briefly reviewed, with special reference to function in eutrophic reservoir systems. The ecology of larger algal biomasses supported by high nutrient loading rates are more likely to be subject to physical (wash-out, underwater light penetration, thermal stability and mixing) than to chemical constraints. Sudden changes in the interactions between physical factors temporarily impair the growth of dominant algal species, and advance the succession. Certain algae may be cropped heavily, but selectively, by zooplankton feeding, but they are rarely the species which cause problems in waterworks practice. Grazing, however, does influence succession. A deeper understanding of the operation of loss control mechanism is urgently required. Potentially, manipulation of the physical environment provides an important means of alleviating day-to-day algal problems in eutrophic reservoirs; in terms of cost effectiveness these may prove to be more attractive than reducing nutrient loads at source.
Resumo:
Mixing and transport processes in surface waters strongly influence the structure of aquatic ecosystems. The impact of mixing on algal growth is species-dependent, affecting the competition among species and acting as a selective factor for the composition of the biocoenose. Were it not for the ever-changing ”aquatic weather”, the composition of pelagic ecosystems would be relatively simple. Probably just a few optimally adapted algal species would survive in a given water-body. In contrast to terrestrial ecosystems, in which the spatial heterogeneity is primarily responsible for the abundance of niches, in aquatic systems (especially in the pelagic zone) the niches are provided by the temporal structure of physical processes. The latter are discussed in terms of the relative sizes of physical versus biological time-scales. The relevant time-scales of mixing and transport cover the range between seconds and years. Correspondingly, their influence on growth of algae is based on different mechanisms: rapid changes are relevant for the fast biological processes such as nutrient uptake and photosynthesis, and the slower changes are relevant for the less dynamic processes such as growth, respiration, mineralization, and settling of algal cells. Mixing time-scales are combined with a dynamic model of photosynthesis to demonstrate their influence on algal growth.