6 resultados para redox chromophore

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the humic substances which occur in natural waters have an iron content of a few percent, indicated by the mg/1 content of organically-bonded carbon. This iron is apparently bound in a complex with the humic substances, for it quite plainly differs in its chemical and physico-chemical properties from what one would expect from the purely inorganic iron-water system. The deviations range from the solubility to the redox behaviour, and thus are frequently the basis of analytical and technical difficulties. The key to the solution of most of this problem lies in a better understanding of the aforementioned bonds between the iron and the humic substances. This paper studies the iron content of the humic substance concentration from a bog lake sample and the complexing of iron by humic substances from the surface of the bog lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the geochemical cycling of iron and manganese in a seasonally stratified lake, Esthwaite water is described. This work is based on speculative ideas on environmental redox chemistry of iron which were proposed by C.H. Mortimer in the 1940's. These observations have been verified and some speculations confirmed, along with a new understanding of the manganese cycle, and detailed information on the particulate forms of both iron and manganese. Details on the mechanisms and transformations of iron have also emerged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10–20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, redox potential and turbidity; nutrient status, algal and invertebrate communities (micro‐invertebrates/zooplankton and macro‐invertebrates/macro‐benthos) as well as fish community. The first year‐round quarterly surveys were completed for the year 2011. It was decided by SON management to change the frequency of the monitoring surveys to biannual starting in the year 2012 and the first such survey, which is the subject of this report, was undertaken in June 2012. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physicochemical parameters of 31 fish pond water samples of Tripura were studied to ascertain the nutrient profile of acidic soil zone and the impact of water acidity towards aquaculture productivity. The pH was acidic (mean 6.63±0.44) with high Fe (mean1.04±0.40 mglˉ¹) and AI (mean 2.67±2.41 mglˉ¹) contents. These were mostly responsible for pond water acidity and poor productivity with low nitrogen, phosphate and total alkalinity. The study also showed strong negative relationship between water pH and redox potential (R²=0.5251). However, pH was positively significant with electrical conductivity. The roles of redox potential and electrical conductivity in water acidity were found highly important. Available calcium content was also found low (mean 2.91±2.96 mglˉ¹). Elevating level of pH of pond water could be the possible management practices in acidic water so that such unproductive water might be productive enough with higher phosphate and nitrogen levels for better biological production.