5 resultados para psychosocial risks
em Aquatic Commons
Resumo:
Assessment and management of risk is needed for sustainable use of genetically modified aquatic organisms (aquatic GMOs). A computer software package for safely conducting research with genetically modified fish and shellfish is described. By answering a series of questions about the organism and the accessible aquatic ecosystem, a researcher or oversight authority can either identify specific risks or conclude that there is a specific reason for safety of the experiment. Risk assessment protocols with examples involving transgenic coho salmon, triploid grass carp and hybrid tilapia are described. In case a specific risk is identified, the user is led to consider risk management measures, involving culture methods, facilities design and operations management, to minimize the risk. Key features of the software are its user-friendly organization; easy access to explanatory text, literature citations and glossary; and automated completion of a worksheet. Documented completion of the Performance Standards can facilitate approval of a well designed experiment by oversight authorities.
Resumo:
Transfers and introductions of marine species have occurred and are occurring on a worldwide basis, largely in response to perceived needs of expanding aquaculture industries. Greatest interest is in salmon (cage rearing and ocean ranching), shrimp, and bivalve mollusks, although other organisms are being considered. Such movements of animals carry an associated risk of moving pathogens into areas where they did not occur previously, possibly resulting in infections in native species. Many case histories of the effects of introduced pathogens and parasites now exist-enough to suggest that national and international action is necessary. Viral pathogens of shrimp and salmon, as well as protozoan parasites of mollusks and nematode parasites of eels, have entered complex "transfer networks" developed by humans, and have been transported globally with their hosts in several well-documented instances. Examining the records of transfers and introductions of marine species, incomplete as they are, permits the statement of emerging principles-foremost of which is that severe disease outbreaks can result from inadequately controlled or uncontrolled movements of marine animals.
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
Project fact sheet prepared in cooperation with the USDA Natural Resources Conservation Service and the Kings River Conservation District.
Resumo:
Fresh water and fish are important to the people who live in the Lake Victoria region therefore the quality of the water and fish is of major importance (Johnson & Odada, 1996). It is well known that dirty water and spoilt fish can lead to poor health and lower standards of living, and that quality can be affected by the pollution in the environment. Even though Lake Victoria is very large, it is relatively shallow and the water remains in the lake basin for a long time (Bootsma & Hecky, 1993). There are a number of environmental issues in Lake Victoria, including water hyacinth~over-population and increased farming causing problems with the lake ecosystem. All these factors combine to keep contaminants within the lake for long time, which will lead to gradually increasing concentrations in the lake. Pollution is a term that covers a wide variety of chemicals and physical changes and their adverse effects on the environment. Here we focus on contaminants, which are unwanted chemicals introduced to the environment. Contaminants include a very wide variety of chemicals, both man-made and natural, for example, mercury, pesticides and herbicides, heavy metals, and natural plant and algae toxins. Many contaminants do not always lead to adverse effects immediately, but can gradually induce long-term problems leading to chronic illnesses and physical damage. A few contaminants have very rapid impacts resulting in immediately obvious changes such as death or injury. Sources of contaminants are varied. Contaminants can get in the lake by the way of agricultural treatment of crops near the lake, industrial effluent, intentional introduction such as fish poisoning byfishermen, natural sources such as heavy metals from particular types of rocks, and even some plants naturally release their toxins. Contaminant sources are not always found near Lake Victoria.