5 resultados para protective immunity
em Aquatic Commons
Resumo:
Proliferation of water withdrawals and new pump intake and screen designs has occurred with the growth of irrigated agriculture along the Columbia and Snake Rivers. Concern for the protection of anadromous and resident fish populations resulted in formulation of a survey of the water withdrawal systems. The survey included distribution studies of juvenile fish near pump sites and field inspection of those sites to determine adequacy of screening for protection of fish. A total of 225 sites were inspected in 1979 and 1980, with a follow-up inspection of 95 sites in 1982. Results indicated a definite trend toward lack of concern for the condition of fish protective facilities. Only 4 out of 22 sites not meeting criteria in 1979 had been upgraded to acceptable conditions. Of more concern, 13 of the sites meeting criteria in 1979 were below criteria when reinspected in 1982. Some of the discrepancies included lack of protective screens, poorly maintained screens, and screens permitting excessive velocity that could result in impingement of larvae or small fish. A conclusion from these surveys is that if adequate protection for fish is to exist, screens for water withdrawals need to be properly installed, inspected, and maintained. (PDF file contains 40 pages.)
Resumo:
The mucus surface layer of corals plays a number of integral roles in their overall health and fitness. This mucopolysaccharide coating serves as vehicle to capture food, a protective barrier against physical invasions and trauma, and serves as a medium to host a community of microorganisms distinct from the surrounding seawater. In healthy corals the associated microbial communities are known to provide antibiotics that contribute to the coral’s innate immunity and function metabolic activities such as biogeochemical cycling. Culture-dependent (Ducklow and Mitchell, 1979; Ritchie, 2006) and culture-independent methods (Rohwer, et al., 2001; Rohwer et al., 2002; Sekar et al., 2006; Hansson et al., 2009; Kellogg et al., 2009) have shown that coral mucus-associated microbial communities can change with changes in the environment and health condition of the coral. These changes may suggest that changes in the microbial associates not only reflect health status but also may assist corals in acclimating to changing environmental conditions. With the increasing availability of molecular biology tools, culture-independent methods are being used more frequently for evaluating the health of the animal host. Although culture-independent methods are able to provide more in-depth insights into the constituents of the coral surface mucus layer’s microbial community, their reliability and reproducibility rely on the initial sample collection maintaining sample integrity. In general, a sample of mucus is collected from a coral colony, either by sterile syringe or swab method (Woodley, et al., 2008), and immediately placed in a cryovial. In the case of a syringe sample, the mucus is decanted into the cryovial and the sealed tube is immediately flash-frozen in a liquid nitrogen vapor shipper (a.k.a., dry shipper). Swabs with mucus are placed in a cryovial, and the end of the swab is broken off before sealing and placing the vial in the dry shipper. The samples are then sent to a laboratory for analysis. After the initial collection and preservation of the sample, the duration of the sample voyage to a recipient laboratory is often another critical part of the sampling process, as unanticipated delays may exceed the length of time a dry shipper can remain cold, or mishandling of the shipper can cause it to exhaust prematurely. In remote areas, service by international shipping companies may be non-existent, which requires the use of an alternative preservation medium. Other methods for preserving environmental samples for microbial DNA analysis include drying on various matrices (DNA cards, swabs), or placing samples in liquid preservatives (e.g., chloroform/phenol/isoamyl alcohol, TRIzol reagent, ethanol). These methodologies eliminate the need for cold storage, however, they add expense and permitting requirements for hazardous liquid components, and the retrieval of intact microbial DNA often can be inconsistent (Dawson, et al., 1998; Rissanen et al., 2010). A method to preserve coral mucus samples without cold storage or use of hazardous solvents, while maintaining microbial DNA integrity, would be an invaluable tool for coral biologists, especially those in remote areas. Saline-saturated dimethylsulfoxide-ethylenediaminetetraacetic acid (20% DMSO-0.25M EDTA, pH 8.0), or SSDE, is a solution that has been reported to be a means of storing tissue of marine invertebrates at ambient temperatures without significant loss of nucleic acid integrity (Dawson et al., 1998, Concepcion et al., 2007). While this methodology would be a facile and inexpensive way to transport coral tissue samples, it is unclear whether the coral microbiota DNA would be adversely affected by this storage medium either by degradation of the DNA, or a bias in the DNA recovered during the extraction process created by variations in extraction efficiencies among the various community members. Tests to determine the efficacy of SSDE as an ambient temperature storage medium for coral mucus samples are presented here.
Resumo:
Fry of the Indian major carps, Catta catla (Ham.), Labeo rohita (Ham.) and Cirrhinus mrigala (Ham.) were immunized at 4 and 8 weeks post hatching (wph) by direct immersion in a suspension (10 super(8) cells ml super(-1))of heat inactivated Aeromonas hydrophila. Following the same procedure, booster dose was administered 20 days after the first immersion. Antibodies as well as protective response produced in both the groups after the first and the booster immersion were different and significant (P<0.05). No significant difference was found between the species in the two age groups. The specimens immunized 8 wph showed higher antibody titres and protection than the 4 wph group. C. catla had higher relative percent survival followed by L. rohita and C. mrigala.