13 resultados para proliferative markers
em Aquatic Commons
Resumo:
The evolutionary associations between closely related fish species, both contemporary and historical, are frequently assessed by using molecular markers, such as microsatellites. Here, the presence and variability of microsatellite loci in two closely related species of marine fishes, sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus), are explored by using heterologous primers from red drum (Sciaenops ocellatus). Data from these loci are used in conjunction with morphological characters and mitochondrial DNA haplotypes to explore the extent of genetic exchange between species offshore of Galveston Bay, TX. Despite seasonal overlap in distribution, low genetic divergence at microsatellite loci, and similar life history parameters of C. arenarius and C. nothus, all three data sets indicated that hybridization between these species does not occur or occurs only rarely and that historical admixture in Galveston Bay after divergence between these species was unlikely. These results shed light upon the evolutionary history of these fishes and highlight the genetic properties of each species that are influenced by their life history and ecology.
Resumo:
Molecular markers based on mitochondrial DNA (mtDNA) are extensively used to study genetic relationships. mtDNA has been used in phylogenetic studies to understand the evolutionary history of species because it is maternally inherited and is not subject to genetic recombination (Gyllensten et al., 1991). The high mutation rate of mtDNA makes it a useful tool for differentiating between closely related species (Brown et al., 1979)—a tool that is especially important when significant variations occur between species, but not within species (Hill et al., 2001; Blair et al., 2006; Chow et al., 2006a).
Resumo:
Variation in the allele frequencies of five microsatellite loci was surveyed in 1256 individual spotted seatrout (Cynoscion nebulosus) obtained from 12 bays and estuaries from Laguna Madre, Texas, to Charlotte Harbor, Florida, to St. John’s River on the Florida Atlantic Coast. Texas and Louisiana collection sites were resampled each year for two to four years (1998−2001). Genetic differentiation was observed. Spotted seatrout from Florida waters were strongly differentiated from spotted seatrout collected in Louisiana and Texas. The greatest genetic discontinuity was observed between Tampa Bay and Charlotte Harbor, and Charlotte Harbor seatrout were most similar to Atlantic Coast spotted seatrout. Texas and Louisiana samples were not strongly structured within the northwestern Gulf of Mexico and there was little evidence of temporal differentiation within bays. These findings are contrary to those of earlier analyses with allozymes and mitochondrial DNA (mtDNA) where evidence of spatial differentiation was found for spotted seatrout resident on the Texas coast. The differences in genetic structure observed among these markers may reflect differences in response to selective pressure, or may be due to differences in underlying genetic processes.
Resumo:
Long-term sustainable management of wild populations should be based on management actions that account for the genetic structure among populations. Knowledge of genetic structure and of the degree of demographic exchange between discreet [sic] populations allows managers to better define management units. However, adequate gene loci for population assessments are not always available. In this study, variable co-dominant DNA loci in the heavily exploited marine genus Brevoortia were developed with a microsatellite-enriched DNA library for the Gulf Menhaden (Brevoortia patronus). Microsatellite marker discovery was followed by genetic characterization of 4 endemic North American Brevoortia species, by using 14 novel loci as well as 5 previously described loci. Power analysis of these loci for use in species identification and genetic stock structure was used to assess their potential to improve the stock definition in the menhaden fishery of the Gulf of Mexico. These loci could be used to reliably identify menhaden species in the Gulf of Mexico with an estimated error rate of α=0.0001. Similarly, a power analysis completed on the basis of observed allele frequencies in Gulf Menhaden indicated that these markers can be used to detect very small levels of genetic divergence (Fst≈0.004) among simulated populations, with sample sizes as small as n=50 individuals. A cursory analysis of genetic structure among Gulf Menhaden sampled throughout the Gulf of Mexico indicated limited genetic structure among sampling locations, although the available sampling did not reach the target number (n=50) necessary to detect minimal values of significant structure.
Resumo:
The blue crab (Callinectes sapidus) plays an important economic and ecological role in estuaries and coastal habitats from the Gulf of Mexico to the east coast of North America, but demographic assessments are limited by length-based methods. We applied an alternative aging method using biochemical measures of metabolic byproducts (lipofuscins) sequestered in the neural tissue of eyestalks to examine population age structure. From Chesapeake Bay, subsamples of animals collected from the 1998–99 (n=769) and 1999–2000 (n=367) winter dredge surveys were collected and lipofuscin was measured. Modal analysis of the lipofuscin index provided separation into three modes, whereas carapace-width data collected among the same individuals showed two broad modes. Lipofuscin modal analysis indicated that most adults (carapace width >120 mm) were <2 years old. The results indicate that use of extractable lipofuscin can provide a more accurate and better resolved estimation of demographic structure of blue crab populations in the field than size alone.
Resumo:
Independent molecular markers based on mitochondrial and nuclear DNA were developed to provide positive identification of istiophorid and xiphiid billfishes (marlins, spearfishes, sailfish, and swordfish). Both classes of markers were based on amplification of short segments (<1.7 kb) of DNA by the polymerase chain reaction and subsequent digestion with informative restriction endonucleases. Candidate markers were evaluated for their ability to discriminate among the different species and the level of intraspecific variation they exhibited. The selected markers require no more than two restriction digestions to allow unambiguous identification, although it was not possible to distinguish between white marlin and striped marlin with any of the genetic characters screened in our study. Individuals collected from throughout each species’ range were surveyed with the selected markers demonstrating low levels of intraspecific character variation within species. The resulting keys provide two independent means for the forensic identification of fillets and for specific identification of early life history stages.
Resumo:
Loggerhead sea turtles (Caretta caretta) are migratory, long-lived, and slow maturing. They are difficult to study because they are seen rarely and their habitats range over vast stretches of the ocean. Movements of immature turtles between pelagic and coastal developmental habitats are particularly difficult to investigate because of inadequate tagging technologies and the difficulty in capturing significant numbers of turtles at sea. However, genetic markers found in mitochondrial DNA (mtDNA) provide a basis for predicting the origin of juvenile turtles in developmental habitats. Mixed stock analysis was used to determine which nesting populations were contributing individuals to a foraging aggregation of immature loggerhead turtles (mean 63.3 cm straight carapace length [SCL]) captured in coastal waters off Hutchinson Island, Florida. The results indicated that at least three different western Atlantic loggerhead sea turtle subpopulations contribute to this group: south Florida (69%), Mexico (20%), and northeast Florida-North Carolina (10%). The conservation and management of these immature sea turtles is complicated by their multinational genetic demographics.
Resumo:
Genetic structure of hatchery population of Thai pangas (Pangasius hypophthalmus) of Jessore region, Bangladesh has been investigated from 1 January 2004 to 31 December 2004. Samples for this study were collected from five fish hatcheries viz. Asrom, Banchte Shekha, Chowdhury, Maola and Rezaul Haque. The enzymes were encoded by 15 gene loci: Adh-1*, Est-1*, G3pdh-2*, Gpi-1*, Gpi-2*, Idhp-1*, Idhp-2*, Ldh-1*, Ldh-2*, Mdh-1*, Mdh-2*, Pgm*, Sdh-1*, Sdh-2* and Sod*. Among them four (Est-1*, G3pdh-2*, Gpi-2*and Pgm*) were found to be polymorphic in different populations but only Gpi-2* was polymorphic in all the sampled populations. The mean proportion of polymorphic loci per population was the highest (26.7%) in Banchte Shekha hatchery while the mean proportion of heterozygous loci was 13.33% per individual in Banchte Shekha and Maola hatcheries. The UPGMA dendrogram of Nei's (1972) genetic distances indicated a relationship between the genetic distance and geographical difference. High genetic variability in stocks of Thai pangas was observed in the Banchte Shekha and Maola hatcheries and less variability was found in the other three hatcheries.
Resumo:
Platycephalus indicus is a large benthic fish that inhabits temperate and tropical coastal waters of the Indo-West Pacific and found on sand or mud bottom in vary shallow area of estuary and near shore to depth of 25m. This species is dominant species of platycephalidae family, in Khuzestan, Bushehr and Hormozgan provinces and mainly is captured by bottom trawl, gillnet and moshta in Hormozgan. This study was designed to evaluate population variation and differentiation of bartail flathead (Platycephalus indicus (Linnaeus, 1785))in the Iranian waters of Persian Gulf using the morphometric and meristic characters and by AFLP marker. . A total 180 fish specimens were collected by gill net from six station(khor mosa, bahrekan, shif, motaf, charak and bandar abbas) that was 30 individual related to every station in Iranian shores of Persian Gulf . 28 morphometric factors and 11meristic specialties were measured and morphometric factors was standardized with Beacham formula. Univariate analysis of variance (One-way ANOVA) revealed significant differences with varying degrees between the means for 21 standardized morphometric measurements and 6 meristic counts that showed high significant differences between the six stations sampling. Discriminate function analysis (DFA) or the overall random assignment of individuals into their original groups was for morphometric and meristic characters was 47.9% and 53.9% respectively. The data were subjected to a principle component analysis (PCA) which grouped in eight and four factors for morphometric and meristic charactersrespectively.. Genetic diversity of six populations of bartail flathead (Platycephalus indicus) was investigated using amplified fragment length polymorphism (AFLP). A total of 118 reproducible bands amplified with ten AFLP primer combinations were obtained from 42 fishes that were collected from six different locations in the northern of Persian Gulf. The percentage of polymorphic bands was 57.06%. Average of Nei’s genetic diversity was 0.200±0.008, and Average of Shannon’s index was 0.300±0.011. The results of AMOVA analysis indicated that 66% of the genetic variation contained within populations and 34% occurred among populations and gene flow was 0.6454.The estimated level of population differentiation asmeasured by average Fst value across all loci was 0.327. Plotting discriminant functions 1 and 2 and UPGMA dendrograms based on Euclidian distance and genetic distance also showed at least five separate populations of bartail flathead in the northern Persian Gulf.
Resumo:
To determine the best time for egg stripping after ovulation and over-ripened oocyte in the Caspian brown trout (Salmo trutta caspius), the eggs were retained in the parental abdominal cavity for 40 days post-ovulation (DPO) at 7±0.6°C. Eggs were stripped every 10-day interval in 4 treatment and were fertilized with a pool of semen obtained from 8 males. Also, the physiology and biochemistry of the eggs and ovarian fluids were studied. Results showed that the level of eyed eggs and hatched alevins declined with over-ripening time: that is, the expected amounts (90.65 ± 6.28% for eyeing and 86.33 ± 6.82% for hatching) in newly ovulated eggs (0–10 DPO) decreased to 0.67 ± 1.34% and 0.49 ± 0.98%, respectively, in over-ripened eggs (30–40 DPO). However, larval abnormalities remained constant for 30-days after ovulation. During the course of oocyte over-ripening, the pH of the ovarian fluid significantly decreased and the concentration of glucose, protein, calcium, iron, and aspartate aminotransferase activity significantly increased. Moreover, the concentration of protein, triglycerides, and aspartate aminotransferase activity in the eggs also changed. In the newly ovulated egg, the yolk consisted of homogenous tissue and its perivitelline space diameter had no considerable differences. With over-ripening, the yolk became heterogeneous, while chorion diameter and micropyle did not change. The perivitelline space diameter varied among different areas. The present study demonstrated that the best time to take Caspian brown trout eggs after ovulation at 7± 0.6°C was up to 10 DPO. Among the studied parameters of the egg and ovarian fluid, egg quality was related to both ovarian fluid parameters (e.g., pH, protein, aspartate aminotransferase, glucose, cholesterol, triglycerides, calcium, iron) and egg parameters (e.g., cholesterol, triglycerides, iron, aspartate aminotransferase). Thus, these parameters can be used as a egg quality markers in this species.