8 resultados para process analysis

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ENGLISH: A two-stage sampling design is used to estimate the variances of the numbers of yellowfin in different age groups caught in the eastern Pacific Ocean. For purse seiners, the primary sampling unit (n) is a brine well containing fish from a month-area stratum; the number of fish lengths (m) measured from each well are the secondary units. The fish cannot be selected at random from the wells because of practical limitations. The effects of different sampling methods and other factors on the reliability and precision of statistics derived from the length-frequency data were therefore examined. Modifications are recommended where necessary. Lengths of fish measured during the unloading of six test wells revealed two forms of inherent size stratification: 1) short-term disruptions of existing pattern of sizes, and 2) transition zones between long-term trends in sizes. To some degree, all wells exhibited cyclic changes in mean size and variance during unloading. In half of the wells, it was observed that size selection by the unloaders induced a change in mean size. As a result of stratification, the sequence of sizes removed from all wells was non-random, regardless of whether a well contained fish from a single set or from more than one set. The number of modal sizes in a well was not related to the number of sets. In an additional well composed of fish from several sets, an experiment on vertical mixing indicated that a representative sample of the contents may be restricted to the bottom half of the well. The contents of the test wells were used to generate 25 simulated wells and to compare the results of three sampling methods applied to them. The methods were: (1) random sampling (also used as a standard), (2) protracted sampling, in which the selection process was extended over a large portion of a well, and (3) measuring fish consecutively during removal from the well. Repeated sampling by each method and different combinations indicated that, because the principal source of size variation occurred among primary units, increasing n was the most effective way to reduce the variance estimates of both the age-group sizes and the total number of fish in the landings. Protracted sampling largely circumvented the effects of size stratification, and its performance was essentially comparable to that of random sampling. Sampling by this method is recommended. Consecutive-fish sampling produced more biased estimates with greater variances. Analysis of the 1988 length-frequency samples indicated that, for age groups that appear most frequently in the catch, a minimum sampling frequency of one primary unit in six for each month-area stratum would reduce the coefficients of variation (CV) of their size estimates to approximately 10 percent or less. Additional stratification of samples by set type, rather than month-area alone, further reduced the CV's of scarce age groups, such as the recruits, and potentially improved their accuracy. The CV's of recruitment estimates for completely-fished cohorts during the 198184 period were in the vicinity of 3 to 8 percent. Recruitment estimates and their variances were also relatively insensitive to changes in the individual quarterly catches and variances, respectively, of which they were composed. SPANISH: Se usa un diseño de muestreo de dos etapas para estimar las varianzas de los números de aletas amari11as en distintos grupos de edad capturados en el Océano Pacifico oriental. Para barcos cerqueros, la unidad primaria de muestreo (n) es una bodega de salmuera que contenía peces de un estrato de mes-área; el numero de ta11as de peces (m) medidas de cada bodega es la unidad secundaria. Limitaciones de carácter practico impiden la selección aleatoria de peces de las bodegas. Por 10 tanto, fueron examinados los efectos de distintos métodos de muestreo y otros factores sobre la confiabilidad y precisión de las estadísticas derivadas de los datos de frecuencia de ta11a. Se recomiendan modificaciones donde sean necesarias. Las ta11as de peces medidas durante la descarga de seis bodegas de prueba revelaron dos formas de estratificación inherente por ta11a: 1) perturbaciones a corto plazo en la pauta de ta11as existente, y 2) zonas de transición entre las tendencias a largo plazo en las ta11as. En cierto grado, todas las bodegas mostraron cambios cíclicos en ta11a media y varianza durante la descarga. En la mitad de las bodegas, se observo que selección por ta11a por los descargadores indujo un cambio en la ta11a media. Como resultado de la estratificación, la secuencia de ta11as sacadas de todas las bodegas no fue aleatoria, sin considerar si una bodega contenía peces de un solo lance 0 de mas de uno. El numero de ta11as modales en una bodega no estaba relacionado al numero de lances. En una bodega adicional compuesta de peces de varios lances, un experimento de mezcla vertical indico que una muestra representativa del contenido podría estar limitada a la mitad inferior de la bodega. Se uso el contenido de las bodegas de prueba para generar 25 bodegas simuladas y comparar los resultados de tres métodos de muestreo aplicados a estas. Los métodos fueron: (1) muestreo aleatorio (usado también como norma), (2) muestreo extendido, en el cual el proceso de selección fue extendido sobre una porción grande de una bodega, y (3) medición consecutiva de peces durante la descarga de la bodega. EI muestreo repetido con cada método y distintas combinaciones de n y m indico que, puesto que la fuente principal de variación de ta11a ocurría entre las unidades primarias, aumentar n fue la manera mas eficaz de reducir las estimaciones de la varianza de las ta11as de los grupos de edad y el numero total de peces en los desembarcos. El muestreo extendido evito mayormente los efectos de la estratificación por ta11a, y su desempeño fue esencialmente comparable a aquel del muestreo aleatorio. Se recomienda muestrear con este método. El muestreo de peces consecutivos produjo estimaciones mas sesgadas con mayores varianzas. Un análisis de las muestras de frecuencia de ta11a de 1988 indico que, para los grupos de edad que aparecen con mayor frecuencia en la captura, una frecuencia de muestreo minima de una unidad primaria de cada seis para cada estrato de mes-área reduciría los coeficientes de variación (CV) de las estimaciones de ta11a correspondientes a aproximadamente 10% 0 menos. Una estratificación adicional de las muestras por tipo de lance, y no solamente mes-área, redujo aun mas los CV de los grupos de edad escasos, tales como los reclutas, y mejoró potencialmente su precisión. Los CV de las estimaciones del reclutamiento para las cohortes completamente pescadas durante 1981-1984 fueron alrededor de 3-8%. Las estimaciones del reclutamiento y sus varianzas fueron también relativamente insensibles a cambios en las capturas de trimestres individuales y las varianzas, respectivamente, de las cuales fueron derivadas. (PDF contains 70 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mature adult Clarias gariepinus were obtained at the ABRU hatchery in Sonning (UK), where they had beenbred and reared for several years. These were exposed to two concentrations of dieldrin in water (2.4 mu g super(-1) and 4.0 mu g super(-1). The residue analysis of diedrin in three tissues exposed for on moth at two concentrations was carried out. These were subjected to GLC analytical process. The results indicated significantly (P<0.05) higher residues in liver than in muscle and brain. The results also showed that residue levels were dependant on exposure concentration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guided by experience and the theoretical development of hydrobiology, it can be considered that the main aim of water quality control should be the establishment of the rates of the self-purification process of water bodies which are capable of maintaining communities in a state of dynamic balance without changing the integrity of the ecosystem. Hence, general approaches in the elaboration of methods for hydrobiological control are based on the following principles: a. the balance of matter and energy in water bodies; b. the integrity of the ecosystem structure and of its separate components at all levels. Ecosystem analysis makes possible a revelation of the whole totality of factors which determine the anthropogenic evolution of a water body. This is necessary for the study of long-term changes in water bodies. The principles of ecosystem analysis of water bodies, together with the creation of their mathematical models, are important because, in future, with the transition of water demanding production into closed cycles of water supply, changes in water bodies will arise in the main through the influence of 'diffuse' pollution (from the atmosphere, with utilisation in transport etc.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

English: We describe an age-structured statistical catch-at-length analysis (A-SCALA) based on the MULTIFAN-CL model of Fournier et al. (1998). The analysis is applied independently to both the yellowfin and the bigeye tuna populations of the eastern Pacific Ocean (EPO). We model the populations from 1975 to 1999, based on quarterly time steps. Only a single stock for each species is assumed for each analysis, but multiple fisheries that are spatially separate are modeled to allow for spatial differences in catchability and selectivity. The analysis allows for error in the effort-fishing mortality relationship, temporal trends in catchability, temporal variation in recruitment, relationships between the environment and recruitment and between the environment and catchability, and differences in selectivity and catchability among fisheries. The model is fit to total catch data and proportional catch-at-length data conditioned on effort. The A-SCALA method is a statistical approach, and therefore recognizes that the data collected from the fishery do not perfectly represent the population. Also, there is uncertainty in our knowledge about the dynamics of the system and uncertainty about how the observed data relate to the real population. The use of likelihood functions allow us to model the uncertainty in the data collected from the population, and the inclusion of estimable process error allows us to model the uncertainties in the dynamics of the system. The statistical approach allows for the calculation of confidence intervals and the testing of hypotheses. We use a Bayesian version of the maximum likelihood framework that includes distributional constraints on temporal variation in recruitment, the effort-fishing mortality relationship, and catchability. Curvature penalties for selectivity parameters and penalties on extreme fishing mortality rates are also included in the objective function. The mode of the joint posterior distribution is used as an estimate of the model parameters. Confidence intervals are calculated using the normal approximation method. It should be noted that the estimation method includes constraints and priors and therefore the confidence intervals are different from traditionally calculated confidence intervals. Management reference points are calculated, and forward projections are carried out to provide advice for making management decisions for the yellowfin and bigeye populations. Spanish: Describimos un análisis estadístico de captura a talla estructurado por edad, A-SCALA (del inglés age-structured statistical catch-at-length analysis), basado en el modelo MULTIFAN- CL de Fournier et al. (1998). Se aplica el análisis independientemente a las poblaciones de atunes aleta amarilla y patudo del Océano Pacífico oriental (OPO). Modelamos las poblaciones de 1975 a 1999, en pasos trimestrales. Se supone solamente una sola población para cada especie para cada análisis, pero se modelan pesquerías múltiples espacialmente separadas para tomar en cuenta diferencias espaciales en la capturabilidad y selectividad. El análisis toma en cuenta error en la relación esfuerzo-mortalidad por pesca, tendencias temporales en la capturabilidad, variación temporal en el reclutamiento, relaciones entre el medio ambiente y el reclutamiento y entre el medio ambiente y la capturabilidad, y diferencias en selectividad y capturabilidad entre pesquerías. Se ajusta el modelo a datos de captura total y a datos de captura a talla proporcional condicionados sobre esfuerzo. El método A-SCALA es un enfoque estadístico, y reconoce por lo tanto que los datos obtenidos de la pesca no representan la población perfectamente. Además, hay incertidumbre en nuestros conocimientos de la dinámica del sistema e incertidumbre sobre la relación entre los datos observados y la población real. El uso de funciones de verosimilitud nos permite modelar la incertidumbre en los datos obtenidos de la población, y la inclusión de un error de proceso estimable nos permite modelar las incertidumbres en la dinámica del sistema. El enfoque estadístico permite calcular intervalos de confianza y comprobar hipótesis. Usamos una versión bayesiana del marco de verosimilitud máxima que incluye constreñimientos distribucionales sobre la variación temporal en el reclutamiento, la relación esfuerzo-mortalidad por pesca, y la capturabilidad. Se incluyen también en la función objetivo penalidades por curvatura para los parámetros de selectividad y penalidades por tasas extremas de mortalidad por pesca. Se usa la moda de la distribución posterior conjunta como estimación de los parámetros del modelo. Se calculan los intervalos de confianza usando el método de aproximación normal. Cabe destacar que el método de estimación incluye constreñimientos y distribuciones previas y por lo tanto los intervalos de confianza son diferentes de los intervalos de confianza calculados de forma tradicional. Se calculan puntos de referencia para el ordenamiento, y se realizan proyecciones a futuro para asesorar la toma de decisiones para el ordenamiento de las poblaciones de aleta amarilla y patudo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mucus surface layer of corals plays a number of integral roles in their overall health and fitness. This mucopolysaccharide coating serves as vehicle to capture food, a protective barrier against physical invasions and trauma, and serves as a medium to host a community of microorganisms distinct from the surrounding seawater. In healthy corals the associated microbial communities are known to provide antibiotics that contribute to the coral’s innate immunity and function metabolic activities such as biogeochemical cycling. Culture-dependent (Ducklow and Mitchell, 1979; Ritchie, 2006) and culture-independent methods (Rohwer, et al., 2001; Rohwer et al., 2002; Sekar et al., 2006; Hansson et al., 2009; Kellogg et al., 2009) have shown that coral mucus-associated microbial communities can change with changes in the environment and health condition of the coral. These changes may suggest that changes in the microbial associates not only reflect health status but also may assist corals in acclimating to changing environmental conditions. With the increasing availability of molecular biology tools, culture-independent methods are being used more frequently for evaluating the health of the animal host. Although culture-independent methods are able to provide more in-depth insights into the constituents of the coral surface mucus layer’s microbial community, their reliability and reproducibility rely on the initial sample collection maintaining sample integrity. In general, a sample of mucus is collected from a coral colony, either by sterile syringe or swab method (Woodley, et al., 2008), and immediately placed in a cryovial. In the case of a syringe sample, the mucus is decanted into the cryovial and the sealed tube is immediately flash-frozen in a liquid nitrogen vapor shipper (a.k.a., dry shipper). Swabs with mucus are placed in a cryovial, and the end of the swab is broken off before sealing and placing the vial in the dry shipper. The samples are then sent to a laboratory for analysis. After the initial collection and preservation of the sample, the duration of the sample voyage to a recipient laboratory is often another critical part of the sampling process, as unanticipated delays may exceed the length of time a dry shipper can remain cold, or mishandling of the shipper can cause it to exhaust prematurely. In remote areas, service by international shipping companies may be non-existent, which requires the use of an alternative preservation medium. Other methods for preserving environmental samples for microbial DNA analysis include drying on various matrices (DNA cards, swabs), or placing samples in liquid preservatives (e.g., chloroform/phenol/isoamyl alcohol, TRIzol reagent, ethanol). These methodologies eliminate the need for cold storage, however, they add expense and permitting requirements for hazardous liquid components, and the retrieval of intact microbial DNA often can be inconsistent (Dawson, et al., 1998; Rissanen et al., 2010). A method to preserve coral mucus samples without cold storage or use of hazardous solvents, while maintaining microbial DNA integrity, would be an invaluable tool for coral biologists, especially those in remote areas. Saline-saturated dimethylsulfoxide-ethylenediaminetetraacetic acid (20% DMSO-0.25M EDTA, pH 8.0), or SSDE, is a solution that has been reported to be a means of storing tissue of marine invertebrates at ambient temperatures without significant loss of nucleic acid integrity (Dawson et al., 1998, Concepcion et al., 2007). While this methodology would be a facile and inexpensive way to transport coral tissue samples, it is unclear whether the coral microbiota DNA would be adversely affected by this storage medium either by degradation of the DNA, or a bias in the DNA recovered during the extraction process created by variations in extraction efficiencies among the various community members. Tests to determine the efficacy of SSDE as an ambient temperature storage medium for coral mucus samples are presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This publication is based on materials covered and outputs generated during the Workshop on Risk Assessment Methodologies and Tools for Aquaculture in Sub-Saharan Africa, which was jointly held by WorldFish and FAO in Siavonga, Zambia on 28 June - 2 July 2010. The workshop was delivered as a training exercise to 17 participants from seven sub-Saharan countries and was designed to highlight current methodologies and tools available for environmental risk analysis in aquaculture development. A key focus of the workshop was to encourage participants to consider hypothetical but realistic scenarios and to discuss issues relevant to evaluating the environmental risks of a given activity or scenario. This publication presents selected scenarios from the workshop and the outcomes of the deliberative process as developed by the participants. This publication is factual but not comprehensive, therefore any statements or estimations of risk do not represent the actual risks arising from the described scenario. It is intended to serve as an easily readable introduction to risk analysis, highlighting worked examples that will provide guidance on how a risk analysis may be approached in a similar situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This commodity and product identification research was undertaken in the context of the CGIAR Research Program on Aquatic Agricultural Systems (AAS). AAS seeks to reduce poverty and improve food security for the millions of small-scale fishers and farmers who depend on the world’s floodplains, deltas and coasts. The objective of this research is to strengthen the capacity of AAS to undertake value chain studies with high potential impact on smallholders. The capacity-building aspect of this research was focused on the process of commodity and product identification for value chain analysis. Its scope was limited to fish and other aquatic animals and products in the Tonle Sap area identified for AAS intervention. The result of the identification process was the selection of a number of commodities and products that were deemed to involve a high number of smallholders along the value chain and that have high market development potential.