36 resultados para plants extract
em Aquatic Commons
Resumo:
Studies were carried out using 96hr static toxicity bioassay to determine the effect of lethal concentrations of extracts from two local plants Tephrosia vogelii and Parkia clappertoniana which are known fish poison, on a species of mud fish. Clarias gariepinus Phytochemical analysis of the plant extracts was done and the extract from T. vogelii was found to contain alkaloids, tannins and flavonoids, while the extract from P. clappertoniana was formed to contain alkaloids tannins and saponins. Experimental fish were exposed to test water separately polluted by varying concentrations of extraction of both plant species ranging from 0.50mgl super(-1), 1.50mgl super(-1), 2.50mgl super(-1), 3.0mgl super(-1), 5.00mgl super(-1), 10.00mgl super(-1) in the case of T. vogelii and 5.00mgl super(-1), 7.50mgl super(-1), 10.00mgl super(-1), 15.00mgl super(-1), 20.00mgl super(-1) and 30.00mgl super(-1) in the case of P. clappertaniana. Behavioural hispathological and heamatological examinations were made. Both plant extracts were found to have lethal effects at the higher concentrations, affecting the gills and the central nervous system as well as having a depressive effect on the total count and increasing platelet and white blood cell count. Symptoms of toxicosis observed include, initial inactivation agitated swimming, tumbling movement air gulping, increased opercular beat and period of quiescence/knockdown before death. Marked differences were also observed in the hematological and histopathological analysis of poisoned fish. Lower concentrations of the extracts had sub lethal effects on the fish, which manifested as zigzag movement air gulping increased opercular movement etc. None of these effects were observed in the control experiment
Resumo:
Effect of aqueous leaf extracts of Catheranthus roseus, Calotropis gigantium and Datura stromoneum on common carp, Cyprinus carpio were investigated. C. carpio were separately fed with 1 and 2% aqueous extracts of these three plant leaves for a period of seven days. In 1% Catheranthus roseus of leaf extract fed group no significant tissue level changes were recorded. One and 2% of other two species fed treated group showed mild to severe necrotic and cellular changes in liver, kidney and spleen. Immunologically, significant rise in antibody titre and respiratory burst activity was recorded for 1% Catheranthus roseusfed group.
Resumo:
In the present study, natural occurrence of fungi and aflatoxin B1 (AFB1) in pellet feed and feed ingredients used for rainbow trout was investigated with emphasis to Aspergillus section Flavi members and medicinal plants inhibitory to Aspergillus growth and/or AF production. The feed samples were cultured on the standard isolation media including dichloran rosebengal chloramphenicol agar (DRCA) and Aspergillus flavus/parasiticus agar (AFPA) for 2 weeks at 28 °C. Identification of fungal isolates was implemented based on the macro- and microscopic morphological criteria. AFs were detected using high performance liquid chromatography (HPLC). Based on the results obtained, a total of 109 fungal isolates were identified of which Aspergillus was the prominent genus (57.0%), followed by Penicillium (12.84%), Absidia (11.01%) and Pseudallscheria (10.10%). The most frequent Aspergillus species was A. flavus (60.66%) isolated from all the feed ingredients as well as pellet feed. Among 37 A. flavus isolates, 19 (51.35%) were able to produce AFB1 on yeast extract-sucrose (YES) broth in the range of 10.2 to 612.8 [tg/g fungal dry weight. HPLC analyses of trout feed showed that pellet feed and all feed ingredients tested except gluten were contaminated with different levels of AFB1 in the range of 1.83 to 67.35 lig/kg. In order to finding natural inhibitors of fungal growth and/or AF production, essential oils (EOs) and extracts of 49 medicinal plants were studied against an aflatoxin-producing A. parasiticus using a microbioassay technique. The EOs was analyzed by gas chromatography/mass spectrometry (GC/MS). Based on the results obtained, Achillea millefolium sub sp. elborsensis, Ferula gummosa, Mentha spicata, Azadirachta indica, Conium maculatum and Artemisia dracunculus remarkably inhibited A. parasiticus growth without affecting AF production by the fungus. Besides of Thymus vulgaris and Citrus aurantifolia, the EO of Foeniculum vulgare significantly inhibited both fungal growth (-70.0%) and AFs B1 and G1 (-99.0%) production. The EO of Carum carvi and ethyl acetate extract of Platycladus orientalis suppressed AFs B1 and G1 by more than 90.0%, without any obvious effect on fungal growth. The IC50 values of bioactive plants for AFs B1 and G1 were determined in the ranges of 90.6 to 576.2 and 2.8 to 61.9 µg/ml, respectively. Overall, results of the present study indicate the importance of AF contamination of trout feed as a risk factor for fish farming and thus, an urgent necessity for constant monitoring of trout feed for any unacceptable levels of AF contamination. Likewise, antifungal activities of bioactive plants introduced here would be an important contribution to explain the use of these plants as effective antimicrobial candidates to protect feeds from toxigenic fungus growth and subsequent AF contamination.
Resumo:
Fossil flora described in the present report is too limited for purposes of exact correlation, which may be expected to be settled by the marine faunas present at most horizons in the Isthmian region. Accompanying table of distribution will show that from the oldest (Hohio) to the youngest (Gatun) plant-bearing formations there is no observable difference in floral facies. This so-called Oligocence series of formations does not represent any great interval of time. (39 page document)
Resumo:
The effects of the grass carp (Ctenopharyngodon idella Val.)on aquatic plant biomass, water quality, phytoplankton, chlorophyll a, zooplankton and benthic fauna were investigated between May and September 2000 in earthen ponds at Cifteler- Sakaryabasi Aquaculture and Research Station. (PDF has 8 pages)
Resumo:
Carfentrazone-ethyl (CE) is a reduced risk herbicide that is currently being evaluated for the control of aquatic weeds. Greenhouse trials were conducted to determine efficacy of CE on water hyacinth ( Eichhornia crassipes (Mart.) Solms- Laub.), water lettuce ( Pistia stratiotes L.), salvinia ( Salvinia minima Baker) and landoltia (Landoltia punctata (G. Mey.) Les & D. J. Crawford ) . CE controlled water lettuce, water hyacinth and salvinia at rates less than the maximum proposed use rate of 224 g ha -1 . Water lettuce was the most susceptible to CE with an EC 90 of 26.9 and 33.0 g ha -1 in two separate trials. Water hyacinth EC 90 values were calculated to be 86.2 to 116.3 g ha -1 , and salvinia had a similar susceptibility to water hyacinth with an EC 90 of 79.1 g ha -1 . Landoltia was not adequately controlled at the rates evaluated. In addition, CE was applied to one-half of a 0.08 ha pond located in North Central, Florida to determine dissipation rates in water and hydrosoil when applied at an equivalent rate of 224 g ha -1 . The half-life of CE plus the primary metabolite, CE-chloropropionic acid, was calculated to be 83.0 h from the whole pond, and no residues were detected in water above the limit of quantification (5 μg L -1 ) 168 h after treatment. CE dissipated rapidly from the water column, did not occur in the sediment above the levels of quantification, and in greenhouse studies effectively controlled three species of aquatic weeds at relatively low rates.(PDF contains 6 pages.)
Resumo:
Biological control of exotic plant populations with native organisms appears to be increasing, even though its success to date has been limited. Although many researchers and managers feel that native organisms are easier to use and present less risk to the environment this may not be true. Developing a successful management program with a native insect is dependent on a number of critical factors that need to be considered. Information is needed on the feeding preference of the agent, agent effectiveness, environmental regulation of the agent, unique requirements of the agent, population maintenance of the agent, and time to desired impact. By understanding these factors, researchers and managers can develop a detailed protocol for using the native biological control agent for a specific target plant. . We found E. lecontei in 14 waterbodies, most of which were in eastern Washington. Only one lake with weevils was located in western Washington. Weevils were associated with both Eurasian ( Myriophyllum spicatum L.) and northern watermilfoil ( M. sibiricum K.). Waterbodies with E. lecontei had significantly higher ( P < 0.05) pH (8.7 ± 0.2) (mean ± 2SE), specific conductance (0.3 ± 0.08 mS cm -1 ) and total alkalinity (132.4 ± 30.8 mg CaCO 3 L -1 ). We also found that weevil presence was related to surface water temperature and waterbody location ( = 24.3, P ≤ 0.001) and of all the models tested, this model provided the best fit (Hosmer- Lemeshow goodness-of-fit = 4.0, P = 0.9). Our results suggest that in Washington State E. lecontei occurs primarily in eastern Washington in waterbodies with pH ≥ 8.2 and specific conductance ≥ 0.2 mS cm -1 . Furthermore, weevil distribution appears to be correlated with waterbody location (eastern versus western Washington) and surface water temperature.
Resumo:
(PDF has 125 pages.)
Resumo:
A study was conducted to determine the efficacy of carp pituitary extract, deoxycorticosterone acetate, and human chorionic gonadotropin in inducing spawning in Clarias lazera . Results indicate deoxycorticosterone acetate to be more potent than pituitary extract, although the difference is not significant
Resumo:
The use of synthetic and non-synthetic hormones have been reported in different regions with the recommendation of different doses. The adaptability of these findings have however not been very successful due to the high cost of building and maintaining hatchery, high cost of synthetic hormone (when available) and high level manpower required. It is obvious that adaptive research in the past ten years in developing countries like Nigeria have been geared towards utilization of resources that are equally effective but cheap and ready to come by. This paper reports the utilization of the pituitary extract of bull frog (Rana adspersa) and the toad (Bufo regularis) in the induced breeding of the African catfish, Clarias gariepinus. The extraction and dosage are discussed alongside the preliminary rearing of fries in outdoor hatchery tanks. Human chorionic gonadotrophin (HCG) and Clarias pituitary extracts were used as control
Resumo:
Clarias gariepinus fingerlings were exposed 96 hours under laboratory conditions using static bioassays with continuous aeration to determine acute toxicity of Datura innoxia root extract. The LC sub(50) of the exposed fingerlings was 128.83 mg/L. The fish exhibited loss of balance, respiratory distress and swam erratically just prior to death
Resumo:
The biomass yields of duck week (Lemna minor(L) was monitored in hydroponic media prepared by variously extracting 0.50, 1.00 and 2.00g of dried chicken manure per liter of city water (tap water) supply. The culture media consisting of aqueous extract of the various manure treatments were made up to 12 liters in all cases with tap water as control. Plastic baths of 25 liters capacity with 0.71 super(m2) surface area were used as culture facility. Each bath was stocked at a density of 30g super(m-2) with fresh weed samples (i.e 21.30g/bath). Maximum yields were obtained at all treatment levels and control on day 3 and based on the highest yield of 0.37gm super(-2)d super(-1) (dry matter) obtained at 1.00gL manure treatment which was however not significantly higher (P>0.05) than the 0.36gm super(-2)d super(-1) (dry matter) at 0.05gl super(-1) media manure content, an average manure level of 0.75l super(-1) was selected and used to determine the operational plant density. Thus fresh weights of 30 to 300gm super(-2) was grown in triplicate at 30g intervals for a period of 3 days. A regression equation of Y=2.6720+0.0021x with a corresponding maximum density or operational plant density of 266gm super(-2) and yield of 0.98gm super(-2), d super(-1) (dry matter) were obtained. Further growth trials were carried out at the operational density and manure levels of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00gl super(-1) media manure concentration giving a significantly higher yield (P<0.05) of 17gm super(-2), d super(-1) (dry matter). This yield was however doubled to between 2.21 and 2.24gm super(-2) d super(-1) (equivalent to 7.96 to 8.06mt.ha-1, Yr-1 dry matter on extrapolation) if 25% and 75% respectively of the total weed cover were harvested daily within the experimental period. The role of some dissolved plant nutrients (DPN) were also discussed
Resumo:
The importance of ponds for biodiversity in Britain has been demonstrated by a number of studies. However, most of the research and interest has been directed at permanent waterbodies, and temporary ponds have been largely neglected. In this article the author present some preliminary findings from a project which aims to fill some of the many gaps in our knowledge of temporary ponds in Britain. The project, which runs for three years until the end of 2001, aims specifically to investigate the ecology of temporary ponds in England and Wales by describing (i) their wetland plant and macroinvertebrate communities, (ii) their physico-chemical characteristics, and (iii) their value as a biodiversity resource. The article focuses on the assessment of temporary ponds as a biodiversity resource and briefly considers aspects of species richness, rarity and distinctiveness. Where possible, temporary ponds are compared with other waterbody types, mainly permanent ponds from the National Pond Survey (NPS), to give the results a broader context.