5 resultados para plant disease loss
em Aquatic Commons
Resumo:
During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour.
Resumo:
Shallow coral reefs in the IndoPacific contain the highest diversity of marine organisms in the world, with approximately 1500 described species of fish, over 500 species of scleractinian corals, and an estimated 1-10 million organisms yet to be characterized (Reaka-Kudla et al. 1994). These centers of marine biodiversity are facing significant, multiple threats to reef community and habitat structure and function, resulting in local to wide-scale regional damage. Wilkinson (2004) characterized the major pressures as including (1) global climate change, (2) diseases, plagues and invasive species, (3) direct human pressures, (4) poor governance and lack of political will, and (5) international action or inaction. Signs that the natural plasticity of reef ecosystems has been exceeded in many areas from the effects of environmental (e.g., global climate change) and anthropogenic (e.g., land use, pollution) stressors is evidenced by the loss of 20% of the world’s coral reefs (Wilkinson 2004). Predictions are that another 24% (Wilkinson 2006) are under imminent risk of collapse and an additional 26% are under a longer term threat from reduced fitness, disease outbreaks, and increased mortality. These predictions indicate that the current list of approximately 30-40 fatal diseases impacting corals will expand as will the frequency and extent of “coral bleaching” (Waddell 2005; Wilkinson 2004). Disease and corallivore outbreaks, in combination with multiple, concomitant human disturbances are compromising corals and coral reef communities to the point where their ability to rebound from natural disturbances is being lost.
Resumo:
A total of 45 ponds used for fish polyculture were investigated in three zones of Bangladesh to identify the differences among the zones in respect to aqua-ecology, culture practices, fish productivity and health management. Four hundred and fifty fish from three zones were clinically examined by naked eye and histopathology. Out of total number of fish examined, 45 fish from Dhaka zones were examined for parasites and bacteria in addition to histopathology. Faded and haemorrhagic gill, skin, fin, scale loss and lesions were observed during fish examination. Aeromonas spp. Pseudomonas spp. and Streptococcus spp. were isolated respectively from 56%, 46% and 39% affected fish. Among the five water quality parameters analyzed, the highest average hardness and alkalinity respectively were recorded in Rajshahi (156 ppm and 142 ppm) followed by Dhaka (146 ppm and 132 ppm) and Chittagong (81 ppm and 90 ppm). The highest average pH was recorded in Mymensingh (7.52) followed by Rajshahi (7.13) and Chittagong (7.05). Water holding capacity of soil in Rajshahi zone was poor compared to other zones and farmers were found to be reluctant to fish farming.
Resumo:
Thai pangas, Pangasius hypophthalmus is one of the important aquaculture species in Bangladesh. Over the last few years spectacular development has been taking place in Thai pangas farming in Mymensingh district. Due to availability of easy breeding and culture techniques as well as quick return, more and more people are converting their rice fields into pangas farms overnight. The present study was carried out to examine health and disease status of Thai pangas mainly through clinical, histopathological and bacteriological techniques. In addition, for collecting primary data on disease and health status of Thai pangas and the resultant socioeconomic impacts on rural households, questionnaire interview and participatory rural appraisal tools were used with selected farming households in three upazilas of Mymensingh district. The most prevalent diseases as reported by the farmers were red spot, followed by anal protrusion, tail and fin rot, pop eye, dropsy and gill rot. Other conditions like cotton wool type lesion, ulceration and white spot were reported but with lower incidence. Four isolates of Aeromonas hydrophila were recovered from kidney and lesion of diseased fish. Hemorrhage over the body especially near mouth and caudal region was noticed in the fishes associated with aeromonad infection. Internally, kidney, liver and spleen became swollen and enlarged. The isolates varied with their pathogenicity. All the four isolates were sensitive to Nitrofurantoin, Cotrimoxazole and Tetracycline but were resistant to Amoxycilline. An attempt was made to treat diseased fish with extracts from neem leaf, garlic and turmeric. Recovery of infection was monitored through mortality and histopathology. General histopathological changes of different organs were also studied. Extract from neem (Azadirachta indica) leaf gave better result. Telangiectasis, lamellar hypertrophy and hyperplasia hemorrhage, lamellar fusion, necrosis of lamellar epithelial cells, presence of parasites and their cysts were the major pathology of gills. Hemorrhagic lesion, pyknotic nuclei and melanomacrophage centers (MMC) were found in the liver of fish. Major pathologies in kidney of fish included presence of MMC, necrotic and ruptured kidney tubules, severe haemopoietic necrosis, and hemorrhage. The economic loss due to disease in Thai pangas farming was estimated from the difference between expected production and actual production. On an average, Thai pangas farmers of Mymensingh incur a loss of Tk. 23,104/ha/cycle due to fish disease (3.6% of expected total production). The loss, however, varied with location and size of farms, type of farmers and management practices. The study also highlighted fish health management related problems and recommended further work for the development of user-friendly farmer-oriented fish health management packages.
Resumo:
Aquaculture, is perceived as having the greatest potential to meet the growing demand for aquatic food. Crustaceans form one of the main value added components in aquaculture and among them, shrimp aquaculture is the predominant one. Industrial shrimp fanning, in combination with poor management in shrimp aquaculture, has quickly led to severe pollution in shrimp ponds, thereby creating a suitable environment for development of bacterial and virus diseases. White spot disease is one of the most deadly diseases that are caused heavy loss in all Penaeid shrimps family. In Iran during 2002 to 2004 in the Kuzestan province and in 2005 in Bushehr province, the most ponds and farms infected with white spot and the entire industry was facing threat of closure. Owing to the impact of WSSV infection to shrimp aquaculture, there is an urgent need to develop suitable strategies to protect cultured shrimps and make aquaculture more sustainable. Therefore, this study aimed to examine the possibility of protecting shrimp against white spot syndrome virus using bioencapsulated Anemia with E. coil containing the recombinant protein VP28, designed. Virus genome was extracted from naturally infected Litopenaeus vannamei in the Choebdch farms and VP28 gene by designed primers was amplified, extracted, purified and cloned in E. coli TGI. Protein expression evaluated and inactivated bacteria containing recombinant protein encapsulated in Artemia nauplii. White shrimp post larvae stage 5 were fed for 5 days with recombinant nauplii and twice on days 7 and 25 after feeding with Artemia nauplii were challenged with white spot virus. The results of the first experiment revealed that cumulative mortality percent in the group receiving the bacteria containing recombinant plasmid (pMal + VP28) was %14.44±1.11 and the relative percent survival %80.30±1.51. In this group the mortality rates in the various repetitions varied from the 13.33% to 16.66% and relative percent survival of 77.27% to 81.81%. in the Non-recombinant plasmid group (pMal) Mean percent mortality was% 33.33±3.84 and the Relative Percent Survival %54.54±5.24 and in the group that received bacteria contained no recombinant plasmid the Mean cumulative mortality percent was%48.88 ± 5.87 and Relative Percent Survival%33.33± 8.01.