105 resultados para perinatal mortality
em Aquatic Commons
Resumo:
The mortality of the four major cichlid fishes of Urnuoseriche Lake is the subject of this paper. Mortality I as estimated by five techniques, vary amongst the cichlid fishes, viz, Tilapia carbrae, Tilapia mariac, Tilapia zilli cend (hrornoditilapfa guntheri. The highest mortality rate was recorded for T mariac where the total mortality (Z) was 2.06; and natural mortality (M) was 1.8949. This species was also the most highly exploited species of fish with an exploitation ratio of0.566 (56.6%) and exploitation rate of 0.494. The least exploited cichlid fish is (. gun/hen where an exploitation ratio of 0.43209%) and exploitation rate of 0.2225 was recorded. In C'. guntheni, total mortality was 0.726 and natural mortality was 0.413 1. In T zilli, total mortality was 1.0547 wile exploitation ratio was 0.3674 (3 6.74%) and an exploitation rate was 0.2394. In T cahrae. total mortality was 1.8662: exploitation ratio was 0.4786 with an exploitation rate of 0.4045. (7 page document)
Resumo:
In selecting an excess temperature at which to operate a power plant cooling system it has been customary to consider only thermal stresses and to use the ratio of the number of organisms killed to the number of organisms entrained. This frequently leads to the selection of a low excess temperature, AT, which, in turn, requires a large volume flow of cooling water. When mortalities due to physical and chemical stresses are included and the total number of entrained organisms killed is taken as the measure of the environmental damage, it becomes evident that the choice of a low excess temperature is seldom, if ever, best.
Resumo:
ENGLISH: In this paper, a method of analysis described by Gulland (1963) has been used to estimate the fishing mortality rates of tagged yellowfin and skipjack tuna for specific areas and years. Fishing mortality rates obtained for tagged tunas will also represent those for the entire population from which the tagged fishes were drawn, provided the assumptions used and corrections made for these analyses are valid. Total mortality rates of tagged fishes have also been computed. These are not assumed to be directly equivalent to the total mortality rates of the untagged populations,since tagged fishes are subject to additional types of attrition. These additional sources of mortality are also examined in this study. SPANISH: En el presente trabajo se ha usado un método de análisis descrito por Gulland (1963), para estimar las tasas de mortalidad de pesca de los atunes aleta amarilla y barrilete marcados en áreas y años específicos. Las tasas de mortalidad de pesca obtenidas en atunes marcados representarán también las de toda la población, de la cual fueron extraídos, previendo que las suposiciones usadas y las correcciones hechas para estos análisis sean válidas. Las tasas de mortalidad total de los peces marcados también han sido computadas. No se supone que éstas sean directamente equivalentes a las tasas de mortalidad total de las poblaciones no marcadas, ya que los peces marcados están sujetos también a otros tipos de pérdida. Estas otras causas de mortalidad son examinadas también en el presente estudio.
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Resumo:
ENGLISH: One primary duty of the Inter-American Tropical Tuna Commission is to estimate the maximum sustainable catches of yellowfin tuna (Neothunnus macropterus) and skipjack (Katsuwonus pelamis), and to investigate and recommend proposals to maintain the stocks at levels which will permit these catches to be obtained. To do this, there is required some means of predicting yields relative to fishing intensity. . . The age composition of catch, and growth rate of yellowfin tuna for recent years have now been estimated (Hennemuth, 1961). In this paper, relative abundance at age of yellowfin tuna shall be estimated -and used, in turn, to estimate total mortality rate. Yield-per-recruit calculations, based on Beverton and Holt's (1957) simple equation, will be presented to compare present utilization with theoretical maxima under varying levels of fishing mortality and different ages at first capture. SPANISH: Uno de los principales deberes de la Comisión Interamericana del Atún Tropical es estimar las pescas máximas sostenibles de los atunes aleta amarilla (Neothunnus macropterus) y barrilete (Katsuwonus pelamis) , así como estudiar y recomendar proposiciones para mantener los stocks a niveles que permitan obtener estas pescas. Para lograr este propósito se requieren algunos medios que permitan predecir el rendimiento en relación con la intensidad de la pesca. . La composición de edades de la pesca y la tasa de crecimiento del atún aleta amarilla en años recientes han sido estimadas ahora (Hennemuth, 1961). En este trabajo, la abundancia relativa a una edad dada de esta especie será estimada y usada, a su vez, para estimar la tasa de mortalidad total. Los cálculos del rendimiento por recluta, basados en la ecuación simple de Beverton y Holt (1957), serán presentados para comparar la utilización actual con los máximos teóricos bajo valores variables de mortalidad por la pesca y a diferentes edades a la primera captura.
Resumo:
ENGLISH: Age composition of catch, and growth rate, of yellowfin tuna have been estimated by Hennemuth (1961a) and Davidoff (1963). The relative abundance and instantaneous total mortality rate of yellowfin tuna during 1954-1959 have been estimated by Hennenmuth (1961b). It is now possible to extend this work, because more data are available; these include data for 1951-1954, which were previously not available, and data for 1960-1962, which were collected subsequent to Hennemuth's (1961b) publication. In that publication, Hennemuth estimated the total instantaneous mortality rate (Z) during the entire time period a year class is present in the fishery following full recruitment. However, this method may lead to biased estimates of abundance, and hence mortality rates, because of both seasonal migrations into or out of specific fishing areas and possible seasonal differences in availability or vulnerability of the fish to the fishing gear. Schaefer, Chatwin and Broadhead (1961) and Joseph etl al. (1964) have indicated that seasonal migrations of yellowfin occur. A method of estimating mortality rates which is not biased by seasonal movements would be of value in computations of population dynamics. The method of analysis outlined and used in the present paper may obviate this bias by comparing the abundance of an individual yellowfin year class, following its period of maximum abundance, in an individual area during a specific quarter of the year with its abundance in the same area one year later. The method was suggested by Gulland (1955) and used by Chapman, Holt and Allen (1963) in assessing Antarctic whale stocks. This method, and the results of its use with data for yellowfin caught in the eastern tropical Pacific from 1951-1962 are described in this paper. SPANISH: La composición de edad de la captura, y la tasa de crecimiento del atún aleta amarilla, han sido estimadas por Hennemuth (1961a) y Davidoff (1963). Hennemuth (1961b), estimó la abundancia relativa y la tasa de mortalidad total instantánea del atún aleta amarilla durante 1954-1959. Se puede ampliar ahora, este trabajo, porque se dispone de más datos; éstos incluyen datos de 1951 1954, de los cuales no se disponía antes, y datos de 1960-1962 que fueron recolectados después de la publicación de Hennemuth (1961b). En esa obra, Hennemuth estimó la tasa de mortalidad total instantánea (Z) durante todo el período de tiempo en el cual una clase anual está presente en la pesquería, consecutiva al reclutamiento total. Sin embargo, este método puede conducir a estimaciones con bias (inclinación viciada) de abundancia, y de aquí las tasas de mortalidad, debidas tanto a migraciones estacionales dentro o fuera de las áreas determinadas de pesca, como a posibles diferencias estacionales en la disponibilidad y vulnerabilidad de los peces al equipo de pesca. Schaefer, Chatwin y Broadhead (1961) y Joseph et al. (1964) han indicado que ocurren migraciones estacionales de atún aleta amarilla. Un método para estimar las tasas de mortalidad el cual no tuviera bias debido a los movimientos estacionales, sería de valor en los cómputos de la dinámica de las poblaciones. El método de análisis delineado y usado en el presente estudio puede evitar este bias al comparar la abundancia de una clase anual individual de atún aleta amarilla, subsecuente a su período de abundancia máxima en un área individual, durante un trimestre específico del año, con su abundancia en la misma área un año más tarde. Este método fue sugerido por Gulland (1955) y empleado por Chapman, Holt y Allen (1963) en la declaración de los stocks de la ballena antártica. Este método y los resultados de su uso, en combinación con los datos del atún aleta amarilla capturado en el Pacífico oriental tropical desde 1951-1962, son descritos en este estudio.
Resumo:
More than a decade has passed since the passage of the Marine Mammal Protection Act of 1972. During that time the U.S. tuna purse seine neet reduced its incidental porpoise mortality rate more than 10-fold. This was made possible through the development of gear and techniques aimed at reducing the frequency of many low probability events that contribute to the kill. Porpoise are killed by becoming entangled or entrapped in folds and canopies of the net and suffocating. The configuration of the net, both before and during the backdown release procedure, is a major determinant of the number of porpoise killed. Speedboats can be used to tow on the corkllne to prevent net collapse and also to adjust the net configuration to reduce net canopies prior to backdown. Deepening a net can reduce the probability of porpoise being killed by prebackdown net collapse. The effects of environmental conditions and mechanical failures on net configuration can result in high porpoise mortality unless mitigated by skilled vessel maneuvers or prevented by the timely use of speedboats to adjust the net. The backdown procedure is the only means to effectively release captured porpoise from a purse seine. It is also the time during the set when most of the mortality occurs. The use of small mesh safety panels and aprons in the backdown areas of nets reduces porpoise entanglement, and Increases the probability of an effective release. The tie-down points on the net for preparing the backdown channel must be properly located in order to optimize porpoise release. A formula uses the stretched depth of the net to calculate one of these points, making it a simple matter to locate the other. Understanding the dynamics of the backdown procedure permits a thorough troubleshooting of performance, thus preventing the repetition of poorly executed backdowns and thereby reducing mortality. Porpoise that cannot be released must be rescued by hand. A rescuer in a rigidly inflated raft can rescue porpoise effectively at any time during a net set. Hand rescue can make the difference between above average kill and zero kill sets. In all circumstances, the skill and motivation of the captain and his crew are the final determinants in the prevention of incidental porpoise mortality in tuna seining. (PDF file contains 22 pages.)
Resumo:
ENGLISH: Growth and mortality data for Cetengraulis mysticetus, Anchoa naso, Engraulis mordax, E. ring ens, E. anchoita, E. encraslcbolus, E. japonicus, and E. australis were assembled and compared. Estimates of the coefficients of natural mortality, M, of E. anchoita and Ancboa naso were made from the maximum age of the former and from data for the other species. The relative yields per recruit at different fishing mortality rates and lengths at entry into the fishery were calculated for each species, using what are considered to be the best estimates and other likely values of K, a constant of growth, and M. The maximum yields per recruit are theoretically obtainable at very high fishing mortality rates, except when the length at entry is low relative to the asymptotic length. K and M may be positively related to the temperature and to each other, and if such is the case at higher temperatures greater fishing effort would be needed to attain the maximum yield per recruit. The applicability of the yield-per-recruit approach to the data is discussed, and suggestions for further research are made. SPANISH: Se reunieron y compararon los datos sobre el crecimiento y mortalidad correspondientes a Cetengraulis mysticetus, Anchoa naso, Engraulis mordax, E. ringens, E. anchoíta, E. encrasicbolus, E. japonicus y E. australls. Los estimativos de los coeficientes de la mortalidad natural, M, de E. anchoita y Anchoa naso se obtuvieron según la edad máxima de E. anchoita y según los datos de las otras especies. Se calculó para cada especie el rendimiento relativo por recluta a diferentes tasas de mortalidad por la pesca y a diferentes longitudes de entrada a la pesquería, empleándose lo que se considera que son los mejores estimativos y otros valores probables de K, una constante de crecímíento, y M. El rendimiento máximo por recluta se obtiene teóricamente a tasas muy altas de la mortalidad por la pesca con excepción de cuando la longitud a la entrada es baja en relación a la longitud asintótica. K y M pueden estar relacionadas positivamente a la temperatura y mutuamente, y si este es el caso a temperaturas más altas se necesitará un esfuerzo superior de pesca para obtener el rendimiento máximo por recluta. La aplicabilidad del enfoque a los datos rendimiento-por-recluta es discutido y se hacen sugerencias para otras investigaciones. (PDF contains 66 pages.)
Resumo:
ENGLISH: Tag release and return data for the Baja California and Gulf of Guayaquil areas were selected for this study because substantial numbers of returns resulted from these releases and because the effects of emigration are small in these areas. The returns of tags per unit of fishing effort for several experiments in each area were used to estimate the coefficients of total mortality and shedding. The coefficient of annual natural mortality was estimated to be less than 2.0, which is in agreement with a previous estimate of 0.8, but does not improve upon it. The estimates for the average coefficients of catchability are 2.02 X 10-3 for the Baja California area and 0.67 X 10-3 for the Gulf of Guayaquil area. SPANISH: Se seleccionaron para este estudio algunos da tos de liberación y retorno de marcas en las áreas de Baja California y el Golfo de Guayaquil debido a que cantidades substanciales de retornos resultaron de estas liberaciones y porque los efectos de migración son pequeños en estas áreas. Los retornos de marcas por unidad de esfuerzo de pesca de varios experimentos en cada área fueron empleados para estimar los coeficientes de mortalidad total y desprendimiento. Se estimó que el coeficiente de mortalidad natural anual fue inferior a 2.0, lo que está de acuerdo con una estimación anterior de 0.8, pero no la mejora. Las estimaciones de los coeficientes promedios de capturabilidad son 2.02 X 10-3 en el área de Baja California y 0.67 X 10-3 en el área del Golfo de Guayaquil. (PDF contains 58 pages.)
Resumo:
In this report we develop age-length keys and derive age-frequency data. We estimate striped bass and white perch mortality and growth rates, based on the otolith-aging analysis. We also report on hatch-date frequencies of striped bass and white perch larvae, and we discuss environmental effects on recruitment potential.
Resumo:
Alligator mississippiensis (American Alligators) demonstrated low hatchrate success and increased adult mortality on Lake Griffin, FL, between 1998 and 2003. Dying Lake Griffin alligators with symptoms of poor motor coordination were reported to show specific neurological impairment and brain lesions. Similar lesions were documented in salmonines that consumed clupeids with high thiaminase levels. Therefore, we investigated the diet of Lake Griffin alligators and compared it with alligator diets from two lakes that exhibited relatively low levels of unexplained alligator mortality to see if consumption of Dorosoma cepedianum (gizzard shad) could be correlated with patterns of mortality. Shad in both lakes Griffin and Apopka had high levels of thiaminase and Lake Apopka alligators were consuming greater amounts of shad relative to Lake Griffin without showing mortality rates similar to Lake Griffin alligators. Therefore, a relationship between shad consumption alone and alligator mortality is not supported.
Resumo:
The level of Lake Kariba steadily fell during the period 1 June 1979 to 2 Feb 1980, except for a 2-wk period during Dec when it was allowed to rise slightly. Following this the level was again drawn down in anticipation of the Upper Zambezi flood water reaching the lake. At its highest level in June 1979 the lake was 487.42 m above sea level but by Feb 1980 it had dropped to 484.53 m, a total drop of 2.89 m. This left a considerable area of exposed shoreline and a large number of stranded mussels. This report presents the results of an attempt to estimate the mussel mortality, carried out from 28 Jan to 1 Feb 1980. The study area extended from the Charara river mouth to Andora harbour with a total of 24 stations.
Resumo:
Following a large scale fish mortality caused by a considerable spillage of a pentachlbrophenol-based disinfectant from a mushroom farm, a biological survey of the river Conder was undertaken on 23.7.79. A spillage of this same make of disinfectant from this mushroom farm in February 1976 caused a similar large scale fish mortality. On that occasion, the pollution appeared to have little effect on the benthic invertebrates of the river Conder, with no dead organisms found, although the small beck which received the spillage was quite badly affected. This recent spillage of disinfectant involved a considerably greater volume (approximately 900 gallons) than the 1976 discharge and so this report looks at whether invertebrate fauna of the main river were affected on this occasion. Kick samples were taken at a number of sites in the river Conder from the confluence with the polluted beck to Conder Green. A control sample was also taken upstream of the confluence with the polluted beck. All samples were examined on site and live and dead invertebrates noted and identified as accurately as possible.
Resumo:
Sablefish (Anoplopoma fimbria) are often caught incidentally in longline fisheries and discarded, but the extent of mortality after release is unknown, which creates uncertainty for estimates of total mortality. We analyzed data from 10,427 fish that were tagged in research surveys and recovered in surveys and commercial fisheries up to 19 years later and found a decrease in recapture rates for fish originally captured at shallower depths (210–319 m) during the study, sustaining severe hooking injuries, and sustaining amphipod predation injuries. The overall estimated discard mortality rate was 11.71%. This estimate is based on an assumed survival rate of 96.5% for fish with minor hooking injuries and the observed recapture rates for sablefish at each level of severity of hook injury. This estimate may be lower than what actually occurs in commercial fisheries because fish are likely not handled as carefully as those in our study. Comparing our results with data on the relative occurrence of the severity of hooking injuries in longline fisheries may lead to more accurate accounting of total mortality attributable to fishing and to improved management of this species.