3 resultados para paper-based DGT
em Aquatic Commons
Resumo:
Diurnal variation in trawl catches and its influence on energy efficiency of trawler operations are discussed in this paper, based on data on landings of a Japanese factory trawler which operated in the Indian waters during 1992-93. The factory vessel equipped for stern trawling had a length overall of 110 m, GT of 5460 and installed engine power of 5700 hp. Operations were conducted off west coast of India between 31 and 278 m depth contours, using a 80.4 m high opening bottom trawl with an adjusted vertical opening of 7.60.9 m. The catch data was grouped according to the median towing hour, by the time of the day. CPUE obtained was 3713.4 kg.h-1 for day time operations and 1536.6 kg.h-1 for night-time operations. Mean daily catches were 31367 kg.day-1 (SE: 2743) for day time operations and 9430 kg.day-1 (SE: 966) for night-time operations. Fuel consumption were 0.399 and 0.982 kg fuel.kg fish-1, respectively for day and night-time operations. Total catch and catch components such as threadfin bream, bulls eye, hairtails, trevelly, lizard fish showed significant improvement during day-time operations while swarming crabs showed a significant improvement in the night-time operations. The difference in catch rates between day and night could be attributed to diurnal variation in the spatial distribution and schooling behaviour of the catch categories, their differential behaviour in the vicinity of trawl systems under varying light levels of day and night and consequent effect on catching efficiency and size selectivity at different stages in the capture process. The results obtained in addition to its importance in the operational planning of trawling in order to realise objectives of maximising catch per unit effort and minimising fuel consumption per unit volume of fish caught, has added significance in the use of bottom trawl surveys in stock abundance estimates.
Resumo:
Ring seines are lightly constructed purse seines adapted for operation in the traditional sector. Fish production and energy requirement in the ring seine operations, off Cochin, Kerala, India are discussed in this paper, based on data collected during 1997- 1998. The results reflect the Gross Energy Requirement (GER) situation that existed during 1997-1998. Mean catch per ring seiner per year worked out to be 211.9 t of which sardines (Sardinella spp.) constituted 44.3%, followed by Indian mackerel (Rastrelliger kanagurta) 29.7%, carangids 11.4%, penaeid prawns 2.2%, pomfrets 1.1% and miscellaneous fish 11.3%. Total energy inputs into the ring seine operations were estimated to be 1300.8 GJ. Output by way of fish production was determined to be 931.85 GJ. GER is the sum of all non-renewable energy resources consumed in making available a product or service and is a measure of intensity of non-renewable resource use. GER per tonne of fish landed by ring seiners was estimated to be 6.14. Among the operational inputs, kerosene constituted 73.4% of the GER, followed by petrol (12.7%), diesel (6.7%) and lubricating oil (2.4%). Fishing gear contributed 3.8%, engine 0.8% and fishing craft 0.3% of the GER. Energy ratio for ring seining was 0.72 and energy intensity 1.40.
Resumo:
Since the commencement of the exploitation of oceanic tuna resources of the Indian Ocean seventeen years ago, the hooked rates for the tuna species have declined in many areas of the Ocean but there are no evidences of such a trend in the case of the sharks. As a result, the percentage composition of sharks in the longline catches and the percentage of the tuna catch damaged by sharks show an increase. Hence there is an urgent need for innovation of the existing longline gear in order to increase the fishing efficiency for hooking the tuna species with a corresponding reduction in its efficiency for hooking sharks. At the beginning of this fishery, hooked sharks were discarded at sea, at a later stage the liver and fins were taken and the carcass discarded and presently the sharks are also brought along with the tuna catch. Though the shark meat has a very low market value it is brought in order to cover up for the declining tuna catches. Thus it has become very necessary to increase the demand for shark meat by developing products or by-products utilizing shark meat and ensuring the successful continuity of the tuna longline fishery. The pattern of distribution of shark species in the time grounds of the Pacific, Indian and Atlantic Oceans and also the predation of hooked tunas by sharks were discussed earlier (Sivasubranianiam 1963, 1964 and 1966). Some contribution to these studies is made in this paper based on new data become available.