12 resultados para pacs: human aspacts of it
em Aquatic Commons
Resumo:
Geographic Information Systems can help improve ocean literacy and inform our understanding of the human dimensions of marine resource use. This paper describes a pilot project where GIS is used to illustrate the connections between fish stocks and the social, cultural, and economic components of the fishery on land. This method of presenting and merging qualitative and quantitative data represents a new approach to assist fishery managers, participants, policy-makers, and other stakeholders in visualizing an often confusing and poorly understood web of interactions. The Atlantic herring fishery serves as a case study and maps from this pilot project are presented and methods reviewed.
Resumo:
Motile Aeromonas are the most common bacteria of freshwater in the world that cause disease in fish and other cold-blooded and warm-blooded hosts. Among this group of bacteria, Aeromonas hydrophila is important in causing complications such as fin rot, skin ulcers and lethal hemorrhagic septicemia in fish. Several virulence factors involved in the pathogenesis of Aeromonas hydrophila, including extracellular enzymes (protease, lipase, elastase, gelatinase and nuclease) and toxins. From the exotoxins, hemolysin, aerolysin and cytolytic enterotoxin play an important role in pathogenesis. Detection of virulence markers by PCR as a key component of determining the pathogenesis of the bacteria and using indigenous vaccines for better immunization against this disease is important. In this study, a total of 200 fanned carps (126 common carp. 39 silver carp and 35 of grass carp) with symptoms suspected aeromonas septicemia were isolated from Khouzestan province farms. 125 bacteria belong to Aeromonas genus detected by biochemical and PCR methods. 31 of all isolates recognized as Aeromonas hydrophila with biochemical methods, I6srRNA detection and Lipase genes. Results showed that the role of Aeromonas sp. and Aeromonas hydrophila in fish with disease symptoms were 62.5% and 15.5% respectively. By using specific primers, three virulence genes including hemolysin, aerolysine and cytolytic enterotoxin were detected in these confirmed isolates, that 18 isolates (58/06%) hemolysin positive (hlyA +), 16 isolates (51/61%) aerolysine positive (aerA+) and 23 isolates (74/19%) for cytolytic enterotoxin gene (act+) were positive. The result of present study showed that most of the confirmed isolates genotype was hlyA+ act- with frequency equal to 51/61%. For investigating the protection effect of acut strain of bacteria, UV inactivated bacterin was used.
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)
Resumo:
Algae are the most abundant photosynthetic organisms in marine ecosystems and are essential components of marine food webs. Harmful algal bloom or “HAB” species are a small subset of algal species that negatively impact humans or the environment. HABs can pose health hazards for humans or animals through the production of toxins or bioactive compounds. They also can cause deterioration of water quality through the buildup of high biomass, which degrades aesthetic, ecological, and recreational values. Humans and animals can be exposed to marine algal toxins through their food, the water in which they swim, or sea spray. Symptoms from toxin exposure range from neurological impairment to gastrointestinal upset to respiratory irritation, in some cases resulting in severe illness and even death. HABs can also result in lost revenue for coastal economies dependent on seafood harvest or tourism, disruption of subsistence activities, loss of community identity tied to coastal resource use, and disruption of social and cultural practices. Although economic impact assessments to date have been limited in scope, it has been estimated that the economic effects of marine HABs in U.S. communities amount to at least $82 million per year including lost income for fisheries, lost recreational opportunities, decreased business in tourism industries, public health costs of illness, and expenses for monitoring and management. As reviewed in the report, Harmful Algal Research and Response: A Human Dimensions Strategy1, the sociocultural impacts of HABs may be significant, but remain mostly undocumented.
Resumo:
Shark livers are considered as an important raw material providing a quality fish oil. It has been reported to aid white — blood-cell production and act as an active ingredient in hemorrhoid treatments. It is also reported that liver oil as a good supplement of vitamin A and poly-unsaturated fatty acids which are important to the development of brain cells in human. Freshness of livers is very important to extract better quality oil. In Sri Lanka, the annual shark production amounts to 8000t, however the quality of livers collected from landing sites has not being measured yet. Present study was conducted to evaluate the quality of silky (Charcarninus fakiformis) shark livers available in Negombo and Beruwala landing sites in the West Coast of Sri Lanka and also to study the relationship between organoleptic and bio-chemical correlation on freshness of shark livers. Liver samples which were collected from landing sites in the West coast of Sri Lanka, were evaluated for external and internal colour, texture and odour. Total volatile nitrogen (TVN), pH value, free fatty acid (FFA%) and peroxide (PV) values of livers were also determined to assess quality. According to the organoleptic scoring system 4.3% of liver samples were categorized as best in quality while 30.4%, 56.5% and 8.7% rated as good, medium and poor in quality respectively at the Negombo and Beruwala landing sites. Bio-chemical analysis showed that the better quality livers had the highest score for sensory evaluation and low values for TVN, FFA and peroxide value while low quality livers gave low score for sensory evaluation and high TVN, FFA, peroxide values. Correlation coefficient of organoleptic scores against total volatile nitrogen value, pH value, free fatty acid % and peroxide value of shark livers were determined by statistical analysis. Organoleptic score of shark livers was found to be highly.
Resumo:
The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)
Resumo:
In this era of proliferating scientific information it is difficult to keep up with the literature, even in one's own field. Review articles are helpful in summarizing the status of knowledge. In oyster biology, several such published reviews have been of great help to working scientists. The outstanding contributions that come to' mind are those by Baughman (1948), Korringa (1952), Joyce (1972), Breisch and Kennedy (1980), and Kennedy and Breisch (198 I). If done well, such compilations serve as checkpoints, eliminating or vastly reducing the need to consult the literature in detail. On Long Island, New York, where the hard clam Mercenaria mercenaria is the major commercial resource, we have felt the need for some time for a compendium of knowledge on this important mollusk. Several years ago my secretary, students, and I began to gather materials for an annotated bibliography. We have already published a collection of 2233 titles (McHugh et al. 1982), nearly all accompanied by abstracts, and in this publication we have added another 460. The experience has been rewarding. We have been surprised at the extent of the literature, much of it only remotely related to the shellfish industry itself, but nevertheless throwing light on the biology, physiology, and many other aspects of the scientific knowledge of hard clams. The following bibliography is divided into three parts. Part I comprises the bulk of the bibliography, while Parts 2 and 3 contain additional titles that we decided to include during editing, submission, and approval of the manuscript for publication. All three parts are indexed together, however. We also reexamined those titles in the previous bibliography (McHugh et al. 1982) which did not include abstracts. These are included in Parts 2 and 3 of this bibliography. Most of these contained no specific reference to Mercenaria mercenaria. A few searches were terminated for various reasons. (PDF file contains 66 pages.)
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
The Water Framework Directive (WFD; European Commission 2000) is a framework for European environmental legislation that aims at improving water quality by using an integrated approach to implement the necessary societal and technical measures. Assessments to guide, support, monitor and evaluate policies, such as the WFD, require scientific approaches which integrate biophysical and human aspects of ecological systems and their interactions, as outlined by the International Council for Science (2002). These assessments need to be based on sound scientific principles and address the environmental problems in a holistic way. End-users need help to select the most appropriate methods and models. Advice on the selection and use of a wide range of water quality models has been developed within the project Benchmark Models for the Water Framework Directive (BMW). In this article, the authors summarise the role of benchmarking in the modelling process and explain how such an archive of validated models can be used to support the implementation of the WFD.
Resumo:
This review summarizes the findings of 5 years' research (June 1970-June 1975) on the meres of the Shropshire-Cheshire Plain. A mere is a small, shallow lake; supplied principally by ground water, whose chemical composition is infkuenced by the glacial frift through which it is percolating. The seasonal periodicity of the phytoplankton in the meres involved work mainly in the Grose Mere. Here diatoms were typically dominant in Feb & March, green algae in April & May, blue-green algae in early summer and dinoflagellates in late summer. This pattern is broadly similar from year to year, and has been suggested to be representative of a 'regional type'; it is also similar to that described for many of the world's mildly eutrophic temperate lakes. Vertical distribution of phytoplankton is influenced by their buoyancy (or lack of it) of by their ability to swim. A stylized depth-time distribution of 4 major phytoplankton components in Crose Mere is given diagrammatically.