5 resultados para osmoregulation

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article briefly summarises some chief characteristics of osmoregulatory systems in malacostracan crustaceans, evolved to combat hydration, and the limitations thereby imposed on the salinity tolerance and distribution of these animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mangroves are defined as a collection of woody plants and the associated fauna and flora that use a coastal depositional environment. Here the specific effects of salinity changes in mangroves have been examinated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life cycle and population biology of a perennial halophyte Arthrocnemum indicum Willd, was studied from February 1992 to January 1993. During the 12 months, the population was exposed to great variations in soil salinity from 35 to 58 ms/cm2 and soil moisture ranging from flood to drought levels. Seasonal changes in dry weight are directly related to soil salinity stress. When salinity levels become low, the dry matter production increases. A little increase in dry weight from April to July indicates that more negative soil water potentials were limiting plant growth. Proline content increased considerably during the dry season with a corresponding increase in salinity. Water soluble oxalate did not vary much with changes in salinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the global proliferation of toxic Harmful Algal Bloom (HAB) species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic impacts of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as yet unidentified cellular functions is currently unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigation of the toxic effects of atrazine on newly hatched larvae and releasing age fry of the Caspian Kutum, Rutilus frisii kutum, the 96h LC50 was determined as 18.53 ppm and 24.95 ppm, respectively. Newly hatched larvae were exposed to three sublethal concentrations of atrazine (1/2LC50, 1/4LC50 and 1/8LC50) for 7 days. Different histopathological alterations were observed in fins and integument, gills, Kidney, digestive system, liver and the brain of the exposed larvae. Fry’s were exposed to one sublethal concentration of atrazine (1/2LC50) for four days, and like the larvae’s, many histopathological alterations were observed in fins and integument, gills, Kidney, digestive system, liver and the brain of the exposed fry’s, too. Also, measurements of the body ions: Na+, K+, Ca2+, Mg2+ and Cl- in atrazine exposed larvae and fry’s compare to control groups showed that atrazine is changed the body ions composition. No significant differences were found in length growth rate, weight growth rate and the condition factor of the atrazine exposed larvae and fry. Immunohistochemical localization of the Na+, K+-ATPase in integumentary and gill ionocytes, showed no differences in dispersion pattern of the ionocytes in atrazine exposed larvae and fry, compare to control group. Measuring the dimensions of the ionocytes and counting the ionocytes showed that atrazine is affecting on ionocytes by mild increasing in size and mild decreasing in number. Ultrastructural studies, using SEM and TEM, showed that atrazine have significant effects on cellular and subcellular properties. It caused necrosis in surface of the pavement cells in branchial epithelium, necrosis in endoplasmic reticulum of the ionocytes and changed the shape of the mitochondria in these cells. Results showed that sublethal concentrations of atrazine were very toxic to larvae and fry of the Rutilus frisii kutum, and at these levels can made some serious histopathological alterations in their tissues. Related to the severe histopathological alterations in osmoregulatory organs, like gill, kidney and digestive system, and the alterations in the body ion composition, it could be concluded that atrazine could interfere with the osmoregulation process of the Rutilus frisii kutum at the early stages of the life history.