4 resultados para optical indoor positioning
em Aquatic Commons
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)
Resumo:
Induced breeding technique by hypophysation is being applied at the Kainji Lake Research Institute Fisheries Division Hatchery complex in New Bussa, Nigeria, for the production of Clarias fry and fingerlings in indoor and outdoor concrete tank systems. The hatchlings are fed on livefood (zooplankton) and artificial feed. Source of zooplankton is from cultured stock which is maintained throughout the breeding season by fertilization. Production values show that an average of over 4,000 hatchlings (larvae) can be produced by a female breeder (over-700g wt) and percentage survival after two months ranges between 70 to 75%. With the proposed modification and expansion project, an estimated production of over 0.5 million fingerlings per breeding season is projected
Resumo:
This study, though, has as its core objective cost reduction in aquaculture nutrition was equally designed to investigate the value of the peels of cassava (Manihot utillisima) as energy source in the diet of Oreochromis niloticus fry. Three levels of cassava peels diet and a control (100% yellow maize in the carbohydrate mixture) was prepared and tested on O. niloticus fry for ten (10) weeks. The fry with mean weight of 0.32g were grouped fifteen (15) in each of the glass aquaria measuring 60x30x30cm with a maximum capacity of 52 litres of water. The fry were fed twice daily at 10% biomass. Weekly, the fry were weighed to determine the weight increment or otherwise and the quality of feed adjusted accordingly. Water quality parameters like temperature, pH and dissolved oxygen (D.0) were monitored and found to be at desirable level. DT 3 (97 % cassava peels and 3% yellow maize) in the carbohydrate mixture gave the best growth performance. The fry fed, this diet gained mean weight of 1.18g for the period of the experiment. However, the poorest performance in terms of growth was from fry fed the control diet (100%yellow maize in the carbohydrate mixture) fry fed this diet gained mean weight of 0.80 for the duration of the experiment. Analysis of the various growth indices like SGR, PER, FCR and NPU shows that DT3 was the overall best diet with an SGR value of2.40 and FCR of 43.83. However, DT 1 (70% cassava peels and 30% yellow maize) gave the poorest SGR of 1.61 and FCR of 67.58. The difference in weight gain among the fry fed the three levels of cassava peels diet and the control was not statically significant (P>0.05)
Resumo:
The study was designed to investigate the value of the peels of yam (Dioscorea rotundata) as energy source in the diet of Oreochromis niloticus fry and to investigate the level of inclusion of this peels that will give optimum growth performance. Four diets, three levels of yam peels and a control, was prepared and tested on O. niloticus fry (mean weight of 0.27g) for ten weeks. Fifteen (15) O. niloticus fry were grouped in each of the glass aquaria, measuring 60x30x3Ocm and with a maximum capacity of 52 liters of water. The fry were fed twice daily at 10% biomass. The fry were weighed weekly to determine weight increment or otherwise and the quality of feed was adjusted accordingly. DTl (70% yam peels and 30% yellow maize) in the carbohydrate mixture gave the best performance. The fry fed this diet, gained a mean weight of 1.20g for the period of the experiment. The poorest performance in terms of growth was from fry fed the control diet (100% yellow maize in the carbohydrate mixture). Fry fed this diet gained mean weight of 0.80g for the duration of the experiment. Analysis of the various growth indices like SGR, PER, FCR and NPU shows that DTl was the overall best diet with an SGR value of I. 92 and FCR of 54.10. The difference in weight gain by fry fed the three levels of yam peels diet and the control diet (100% yellow maize) was not statistically significant (P>0.05)