249 resultados para ocean zoning
em Aquatic Commons
Resumo:
Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)
Resumo:
While New Hanover County is the second smallest county in North Carolina, it is also the second most densely populated with approximately 850 people per square mile. Nestled between the Cape Fear River and Atlantic Ocean with surrounding barrier island beach communities, the County’s geographic location provides a prime vacation destination, as well as an ideal location for residents who wish to live at the water’s edge. Wilmington is the largest city in the County with a population just under 200,000. Most of the Wilmington metropolitan area is developed, creating intense development pressures for the remaining undeveloped land in the unincorporated County. In order to provide development opportunities for mixed use or high density projects within unincorporated New Hanover County where appropriate urban features are in place to support such projects without the negative effects of urban sprawl, County Planning Staff recently developed an Exceptional Design Zoning District (EDZD). Largely based on the LEED for Neighborhood Development program, the EDZD standards were scaled to fit the unique conditions of the County with the goal of encouraging sustainable development while providing density incentives to entice the use of the voluntary district. The incentive for the voluntary zoning district is increased density in areas where the density may not be allowed under normal circumstances. The rationale behind allowing for higher density projects is that development can be concentrated in areas where appropriate urban features are in place to support such projects, and the tendency toward urban sprawl can be minimized. With water quality being of high importance, it is perceived that higher density development will better protect water quality then lower density projects. (PDF contains 4 pages)
Resumo:
I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document)
Resumo:
Executive Summary [pdf, 0.01 MB] Introduction [pdf, 0.01 MB] Synthesis of the WOCE/JGOFS global CO2 survey data in the North Pacific [pdf, 0.3 MB] Air-sea CO2 fluxes [pdf, 0.1 MB] DIC, TAlk and anthropogenic CO2 distributions in the North Pacific [pdf, 3 MB] Biogeochemical and global implications [pdf, 0.1 MB] Recommendations for the future of carbon studies within PICES [pdf, 0.1 MB] References [pdf, 0.1 MB] Appendix A. Summary of PICES Working Group 13 activities (1998-2001) [pdf, 0.1 MB] Appendix B. Results of Working Group 13 method inter-comparison studies [pdf, 0.6 MB] Appendix C. Results of Working Group 13 data integration workshops [pdf, 0.5 MB] (57 page document)
Resumo:
The four sea turtle species found in Malaysia are the leatherback, olive ridley, green and hawksbill. The threats to these species are acute. Populations of leatherback, olive ridley and hawksbill turtles are on the brink of collapse – threatening a biodiversity crisis in Malaysia and the region. This proceedings contains 8 technical papers presented at a workshop convened in Kijal, Terengganu to chart new directions in the conservation of Malaysia's critically endangered sea turtles and to reverse population decline. They represent a wide range of issues from aspects of biology to a review of 40 years of sea turtle conservation. A paper on the socioeconomic linkages and impacts of fisheries was also included as the workshop adopted a multidisciplinary approach to address the issues. Two case studies, including successful restoration examples from international experiences and restoration efforts in Sabah, pave the way for enhancing turtle conservation in the country.
Resumo:
Table of Contents [pdf, 1 Kb] Summary [pdf, 85 Kb] Introduction [pdf, 0.8 Mb] Major Species and Stocks of Crabs in the PICES Region [pdf, 1.23 Mb] Major Species and Stocks of Shrimps in the PICES Region [pdf, 0.5 Mb] Oceanography [pdf, 0.4 Mb] Sampling and Data Analysis [pdf, 0.38 Mb] Acknowledgements [pdf, 0.27 Mb] References [pdf, 0.33 Mb] Appendices [pdf, 0.3 Mb] Plates 1-5 [pdf, 0.95 Mb] (Document contains 83 pages)
Resumo:
Study on the interactions between marine mammals or marine birds and fisheries in the PICES region of interest. (PDF contains 168 pages)
Resumo:
Preface [pdf, 0.01 Mb] James J. O'Brien The big picture - The ENSO of 1997-98 [pdf, 0.01 Mb] James E. Overland, Nicholas A. Bond & Jennifer Miletta Adams Atmospheric anomalies in 1997: Links to ENSO? [pdf, 0.54 Mb] Vladimir I. Ponomarev, Olga Trusenkova, Serge Trousenkov, Dmitry Kaplunenko, Elena Ustinova & Antonina Polyakova The ENSO signal in the northwest Pacific [pdf, 0.47 Mb] Robert L. Smith, A. Huyer, P.M. Kosro & J.A. Barth Observations of El Niño off Oregon: July 1997 to present (October 1998) [pdf, 1.31 Mb] Patrica A. Wheeler & Jon Hill Biological effects of the 1997-1998 El Niño event off Oregon: Nutrient and chlorophyll distributions [pdf, 1.13 Mb] William T. Peterson Hydrography and zooplankton off the central Oregon coast during the 1997-1998 El Niño event [pdf, 0.26 Mb] William Crawford, Josef Cherniawsky, Michael Foreman & Peter Chandler El Niño sea level signal along the west coast of Canada [pdf, 1.25 Mb] Howard J. Freeland & Rick Thomson The El Niño signal along the west coast of Canada - temperature, salinity and velocity [pdf, 0.49 Mb] Frank A. Whitney, David L. Mackas, David W. Welch & Marie Robert Impact of the 1990s El Niños on nutrient supply and productivity of Gulf of Alaska waters [pdf, 0.06 Mb] Craig McNeil, David Farmer & Mark Trevorrow Dissolved gas measurements at Stn. P4 during the 97-98 El Niño [pdf, 0.13 Mb] Kristen L.D. Milligan, Colin D. Levings & Robert E. DeWreede Data compilation and preliminary time series analysis of abundance of a dominant intertidal kelp species in relation to the 1997/1998 El Niño event [pdf, 0.05 Mb] S.M. McKinnell, C.C. Wood, M. Lapointe, J.C. Woodey, K.E. Kostow, J. Nelson & K.D. Hyatt Reviewing the evidence that adult sockeye salmon strayed from the Fraser River and spawned in other rivers in 1997 [pdf,0.03 Mb] G.A. McFarlane & R.J. Beamish Sardines return to British Columbia waters [pdf, 0.34 Mb] Ken H. Morgan Impact of the 1997/98 El Niño on seabirds of the northeast Pacific [pdf, 0.06 Mb] Thomas C. Royer & Thomas Weingartner Coastal hydrographic responses in the northern Gulf of Alaska to the 1997-98 ENSO event [pdf, 0.76 Mb] John F. Piatt, Gary Drew, Thomas Van Pelt, Alisa Abookire, April Nielsen, Mike Shultz & Alexander Kitaysky Biological effects of the 1997/98 ENSO in Cook Inlet, Alaska [pdf, 0.22 Mb] H.J. Niebauer The 1997-98 El Niño in the Bering Sea as compared with previous ENSO events and the "regime shift" of the late 1970s [pdf, 0.10 Mb] A.S. Krovnin, G.P. Nanyushin, M.Yu. Kruzhalov, G.V. Khen, M.A. Bogdanov, E.I. Ustinova, V.V. Maslennikov, A.M. Orlov, B.N. Kotenev, V.V. Bulanov & G.P. Muriy The state of the Far East seas during the 1997/98 El Niño event [pdf, 0.15 Mb] Stacy Smith & Susan Henrichs Phytoplankton collected by a time-series sediment trap deployed in the southeast Bering Sea during 1997 [pdf, 0.21 Mb] Cynthia T. Tynan Redistributions of cetaceans in the southeast Bering Sea relative to anomalous oceanographic conditions during the 1997 El Niño [pdf, 0.02 Mb] Akihiko Yatsu, Junta Mori, Hiroyuki Tanaka, Tomowo Watanabe, Kazuya Nagasawa, Yikimasa Ishida, Toshimi Meguro, Yoshihiko Kamei & Yasunori Sakurai Stock abundance and size compositions of the neon flying squid in the central North Pacific Ocean during 1979-1998 [pdf, 0.11 Mb] O.B. Feschenko A new point of view concerning the El Niño mechanism [pdf, 0.01 Mb] Nathan Mantua 97/98 Ocean climate variability in the northeast Pacific: How much blame does El Niño deserve? [pdf, 0.01 Mb] Vadim P. Pavlychev Sharp changes of hydrometeorological conditions in the northwestern Pacific during the 1997/1998 El Niño event [pdf, 0.01 Mb] Jingyi Wang Predictability and forecast verification of El Niño events [pdf, 0.01 Mb] (Document contains 110 pages)
Resumo:
I REPORT OF THE PICES WORKSHOP ON THE OKHOTSK SEA AND ADJACENT AREAS (pdf, 0.1 Mb) 1. Outline of the workshop 2. Summary reports from sessions 3. Recommendations of the workshop 4. Acknowledgments II SCIENTIFIC PAPERS SUBMITTED FROM SESSIONS 1. Physical Oceanography Sessions (pdf, 4 Mb) A. Circulation and water mass structure of the Okhotsk Sea and Northwestern Pacific Valentina D. Budaeva & Vyacheslav G. Makarov Seasonal variability of the pycnocline in La Perouse Strait and Aniva Gulf Valentina D. Budaeva & Vyacheslav G. Makarov Modeling of the typical water circulations in the La Perouse Strait and Aniva Gulf region Nina A. Dashko, Sergey M. Varlamov, Young-Ho Han & Young-Seup Kim Anticyclogenesis over the Okhotsk Sea and its influence on weather Boris S. Dyakov, Alexander A. Nikitin & Vadim P. Pavlychev Research of water structure and dynamics in the Okhotsk Sea and adjacent Pacific Howard J. Freeland, Alexander S. Bychkov, C.S. Wong, Frank A. Whitney & Gennady I. Yurasov The Ohkotsk Sea component of Pacific Intermediate Water Emil E. Herbeck, Anatoly I. Alexanin, Igor A. Gontcharenko, Igor I. Gorin, Yury V. Naumkin & Yury G. Proshjants Some experience of the satellite environmental support of marine expeditions at the Far East Seas Alexander A. Karnaukhov The tidal influence on the Sakhalin shelf hydrology Yasuhiro Kawasaki On the formation process of the subsurface mixed water around the Central Kuril Islands Lloyd D. Keigwin Northwest Pacific paleohydrography Talgat R. Kilmatov Physical mechanisms for the North Pacific Intermediate Water formation Vladimir A. Luchin Water masses in the Okhotsk Sea Andrey V. Martynov, Elena N. Golubeva & Victor I. Kuzin Numerical experiments with finite element model of the Okhotsk Sea circulation Nikolay A. Maximenko, Anatoly I. Kharlamov & Raissa I. Gouskina Structure of Intermediate Water layer in the Northwest Pacific Nikolay A. Maximenko & Andrey Yu. Shcherbina Fine-structure of the North Pacific Intermediate Water layer Renat D. Medjitov & Boris I. Reznikov An experimental study of water transport through the Straits of Okhotsk Sea by electromagnetic method Valentina V. Moroz Oceanological zoning of the Kuril Islands area in the spring-summer period Yutaka Nagata Note on the salinity balance in the Okhotsk Sea Alexander D. Nelezin Variability of the Kuroshio Front in 1965-1991 Vladimir I. Ponomarev, Evgeny P. Varlaty & Mikhail Yu. Cheranyev An experimental study of currents in the near-Kuril region of the Pacific Ocean and in the Okhotsk Sea Stephen C. Riser, Gennady I. Yurasov & Mark J. Warner Hydrographic and tracer measurements of the water mass structure and transport in the Okhotsk Sea in early spring Konstantin A. Rogachev & Andrey V. Verkhunov Circulation and water mass structure in the southern Okhotsk Sea, as observed in summer, 1994 Lynne D. Talley North Pacific Intermediate Water formation and the role of the Okhotsk Sea Anatoly S. Vasiliev & Fedor F. Khrapchenkov Seasonal variability of integral water circulation in the Okhotsk Sea B. Sea ice and its relation to circulation and climate V.P. Gavrilo, G.A. Lebedev & A.P. Polyakov Acoustic methods in sea ice dynamics studies Nina M. Pestereva & Larisa A. Starodubtseva The role of the Far-East atmospheric circulation in the formation of the ice cover in the Okhotsk Sea Yoshihiko Sekine Anomalous Oyashio intrusion and its teleconnection with Subarctic North Pacific circulation, sea ice of the Okhotsk Sea and air temperature of the northern Asian continent C. Waves and tides Vladimir A. Luchin Characteristics of the tidal motions in the Kuril Straits George V. Shevtchenko On seasonal variability of tidal constants in the northwestern part of the Okhotsk Sea D. Physical oceanography of the Japan Sea/East Sea Mikhail A. Danchenkov, Kuh Kim, Igor A. Goncharenko & Young-Gyu Kim A “chimney” of cold salt waters near Vladivostok Christopher N.K. Mooers & Hee Sook Kang Preliminary results from a numerical circulation model of the Japan Sea Lev P. Yakunin Influence of ice production on the deep water formation in the Japan Sea 2. Fisheries and Biology Sessions (pdf, 2.8 Mb) A. Communities of the Okhotsk Sea and adjacent waters: composition, structure and dynamics Lubov A. Balkonskaya Exogenous succession of the southwestern Sakhalin algal communities Tatyana A. Belan, Yelena V. Oleynik, Alexander V. Tkalin & Tat’yana S. Lishavskaya Characteristics of pelagic and benthic communities on the North Sakhalin Island shelf Lev N. Bocharov & Vladimir K. Ozyorin Fishery and oceanographic database of Okhotsk Sea Victor V. Lapko Interannual dynamics of the epipelagic ichthyocen structure in the Okhotsk Sea Valentina I. Lapshina Quantitative seasonal and year-to-year changes of phytoplankton in the Okhotsk Sea and off Kuril area of the Pacific Lyudmila N. Luchsheva Biological productivity in anomalous mercury conditions (northern part of Okhotsk Sea) Inna A. Nemirovskaya Origin of hydrocarbons in the ecosystems of coastal region of the Okhotsk Sea Tatyana A. Shatilina Elements of the Pacific South Kuril area ecosystem Vyacheslav P. Shuntov & Yelena P. Dulepova Biota of the Okhotsk Sea: Structure of communities, the interannual dynamics and current status B. Abundance, distribution, dynamics of the common fishes of the Okhotsk Sea Yuri P. Diakov Influence of some abiotic factors on spatial population dynamics of the West Kamchatka flounders (Pleuronectidae) Gordon A. McFarlane, Richard J. Beamish & Larisa M. Zverkova An examination of age estimates of walleye pollock (Theragra chalcogramma) from the Sea of Okhotsk using the burnt otolith method and implications for stock assessment and management Larisa P. Nikolenko Migration of Greenland turbot (Reinhardtius hippoglossoides) in the Okhotsk Sea Galina M. Pushnikova Fisheries impact on the Sakhalin-Hokkaido herring population Vidar G. Wespestad Is pollock overfished? C. Salmon of the Okhotsk Sea: biology, abundance and stock identification Vladimir A. Belyaev, Alexander Yu. Zhigalin Epipelagic Far Eastern sardine of the Okhotsk Sea Yuri E. Bregman, Victor V. Pushnikov, Lyudmila G. Sedova & Vladimir Ph. Ivanov A preliminary report on stock status and productive capacity of horsehair crab Erimacrus isenbeckii (Brandt) in the South Kuril Strait Natalia T. Dolganova Mezoplankton distribution in the West Japan Sea Vladimir V. Efremov, Richard L. Wilmot, Christine M. Kondzela, Natalia V. Varnavskaya, Sharon L. Hawkins & Maria E. Malinina Application of pink and chum salmon genetic baseline to fishery management Vyacheslav N. Ivankov & Valentina V. Andreyeva Strategy for culture, breeding and numerous dynamics of Sakhalin salmon populations Alla M. Kovalevskaya, Natalia I. Savelyeva & Dmitry M. Polyakov Primary production in Sakhalin shelf waters Tatyana N. Krupnova Some reasons for resource reduction of Laminaria japonica (Primorye region) Lyudmila N. Luchsheva & Anatoliy I. Botsul Mercury in bottom sediments of the northeastern Okhotsk Sea Pavel A. Luk’yanov, Natalia I. Belogortseva, Alexander A. Bulgakov, Alexander A. Kurika & Olga D. Novikova Lectins and glycosidases from marine macro and micro-organisms of Japan and Okhotsk Seas Boris A. Malyarchuk, Olga A. Radchenko, Miroslava V. Derenko, Andrey G. Lapinski & Leonid L. Solovenchuk PCR-fingerprinting of mitochondrial genome of chum salmon, Oncorhynchus keta Alexander A. Mikheev Chaos and relaxation in dynamics of the pink salmon (Oncorhynchus gorbuscha) returns for two regions Yuri A. Mitrofanov & Larisa N. Lesnikova Fish-culture of Pacific Salmons increases the number of heredity defects Larisa P. Nikolenko Abundance of young halibut along the West Kamchatka shelf in 1982-1992 Sergey A. Nizyaev Living conditions of golden king crab Lithodes aequispina in the Okhotsk Sea and near the Kuril Islands Ludmila A. Pozdnyakova & Alla V. Silina Settlements of Japanese scallop in Reid Pallada Bay (Sea of Japan) Galina M. Pushnikova Features of the Southwest Okhotsk Sea herring Vladimir I. Radchenko & Igor I. Glebov Present state of the Okhotsk herring stock and fisheries outlook Alla V. Silina & Ida I. Ovsyannikova Distribution of the barnacle Balanus rostratus eurostratus near the coasts of Primorye (Sea of Japan) Galina I. Victorovskaya Dependence of urchin Strongylocentrotus intermedius reproduction on water temperature Anatoly F. Volkov, Alexander Y. Efimkin & Valery I. Chuchukalo Feeding habits of Pacific salmon in the Sea of Okhotsk and in the Pacific waters of Kuril Islands in summer 1993 Larisa M. Zverkova & Georgy A. Oktyabrsky Okhotsk Sea walleye pollock stock status Tatyana N. Zvyagintseva, Elena V. Sundukova, Natalia M. Shevchenko & Ludmila A. Elyakova Water soluble polysaccharides of some Far-Eastern seaweeds 3. Biodiversity Program (pdf, 0.2 Mb) A. Biodiversity of island ecosystems and seasides of the North Pacific Larissa A. Gayko Productivity of Japanese scallop Patinopecten yessoensis (IAY) culture in Posieta Bay (Sea of Japan) III APPENDICES 1. List of acronyms 2. List of participants (Document pdf contains 431 pages)
Resumo:
Bacterioplankton [pdf] Phytoplankton [pdf] Zooplankton [pdf] Non-exploited fish and invertebrates [pdf] Commercially-important fish and invertebrates [pdf] Marine birds [pdf] Mammals [pdf] Supplemental table of Unknowns [html] (Document pdf contains 48 pages)
Resumo:
CHAP 1 - Introduction to the Guide CHAP 2 - Solution chemistry of carbon dioxide in sea water CHAP 3 - Quality assurance CHAP 4 - Recommended standard operating procedures (SOPs) SOP 1 - Water sampling for the parameters of the oceanic carbon dioxide system SOP 2 - Determination of total dissolved inorganic carbon in sea water SOP 3a - Determination of total alkalinity in sea water using a closed-cell titration SOP 3b - Determination of total alkalinity in sea water using an open-cell titration SOP 4 - Determination of p(CO2) in air that is in equilibrium with a discrete sample of sea water SOP 5 - Determination of p(CO2) in air that is in equilibrium with a continuous stream of sea water SOP 6a - Determination of the pH of sea water using a glass/reference electrode cell SOP 6b - Determination of the pH of sea water using the indicator dye m-cresol purple SOP 7 - Determination of dissolved organic carbon and total dissolved nitrogen in sea water SOP 7 en Español - Determinacion de carbono organico disuelto y nitrogeno total disuelto en agua de mar SOP 11 - Gravimetric calibration of the volume of a gas loop using water SOP 12 - Gravimetric calibration of volume delivered using water SOP 13 - Gravimetric calibration of volume contained using water SOP 14 - Procedure for preparing sodium carbonate solutions for the calibration of coulometric CT measurements SOP 21 - Applying air buoyancy corrections SOP 22 - Preparation of control charts SOP 23 - Statistical techniques used in quality assessment SOP 24 - Calculation of the fugacity of carbon dioxide in the pure gas or in air CHAP 5 - Physical and thermodynamic data Errata - to the hard copy of the Guide to best practices for ocean CO2 measurements
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)
Resumo:
This report was developed to help establish National Ocean Service priorities and chart new directions for research and development of models for estuarine, coastal and ocean ecosystems based on user-driven requirements and supportive of sound coastal management, stewardship, and an ecosystem approach to management. (PDF contains 63 pages)
Resumo:
An overview of the workflow process the MBLWHOI Library has created through their digitization efforts with the Internet Archive as the part of two consortial projects. This includes some lessons learned as well as future plans to facilitate access. (21 powerpoint slides)