36 resultados para observing

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On April 4-5, 2002, the PICES MONITOR Task Team, the PICES Continuous Plankton Recorder (CPR) Advisory Panel, and the Exxon Valdez Oil Spill Trustee Council’s Gulf Ecosystem Monitoring (GEM) program convened a workshop in Seattle, U.S.A., to consider enhanced instrumentation for volunteer observing ships (VOS), particularly instruments to complement CPR data. (PDF contains 44 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean observing has been recognized by the US Commission on Ocean Policy, the Ocean Research and Resources Advisory Panel, the Joint Ocean Commission Initiative, and many other ocean policy entities and initiatives as foundational to meeting the nation’s need for more effective coastal and ocean management. The Interim Report of the Interagency Task Force on Ocean Policy (September 2009) has called for strengthening the nation’s capacity for observing the nation’s ocean, coastal, and Great Lakes systems. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The future of PICES [pdf, 1.7 MB] Paris by day - Symposium on "Quantative ecosystem indicators in fisheries management" [pdf, 0.2 MB] The Bering Sea: Current status and recent events [pdf, 0.4 MB] The state of the western North Pacific in the second half of 2003 [pdf, 0.7 MB] The state of the eastern North Pacific entering spring 2004 [pdf, 0.4 MB] PICES-IFEP Workshop on "In-situ iron enrichment experiments in the eastern and western subarctic Pacific" [pdf, 1.4 MB] Canadian SOLAS/PICES-IFEP session on "Response of the upper ocean to meso-scale iron enrichment" [pdf, 0.3 MB] Fisheries and ecosystem responses to recent regime shifts [pdf, 0.8 MB] PICES Interns [pdf, 0.8 MB] Did a regime shift occur in 1998 around Japan?- Highlights from a symposium addressing this question [pdf, 0.8 MB] The Global Ocean Carbon Observing System - Connecting national programs and regional networks [pdf, 1.7 MB] The North Pacific Ecosystem Metadatabase [pdf, 1.2 MB] International GLOBEC Symposium on "Climate variability and Sub-Arctic marine ecosystems" [pdf, 0.2 MB] PICES Calendar [pdf, 0.2 MB] PICES/GLOBEC Symposium on "Climate variability and ecosystem impacts on the North pacific: A basin-scale synthesis" [pdf, 0.2 MB]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International symposium on North Pacific transitional areas [pp. 1-4] [pdf, 0.8 Mb] PICES Volunteer Observing Ship (VOS) Workshop [pp. 5-7] [pdf, 0.3 Mb] Joint meeting on Causes of marine mortality of salmon [pp. 8-9] [pdf, 0.3 Mb] The state of the western North Pacific in the second half of 2001 [pp. 10-11] [pdf, 0.5 Mb] State of the eastern North Pacific in spring 2002 [pp. 12-13] [pdf. 0.4 Mb] The status of the Bering Sea in the second half of 2001 [pp. 14-15] [pdf. 0.3 Mb] PICES Workshop on “Perturbation analysis” on subarctic Pacific gyre ecosystem models [pp. 16-17] [pdf. 0.4 Mb] Status and future plans for SOLAS-Japan [pp. 18-20] [pdf. 0.5 Mb] China-Korea Joint Ocean Research Center: A bridge across the Yellow Sea to connect Chinese and Korean oceanographic institutes and scientists [pp. 21-22] [pdf. 0.3 Mb] Persistent changes in the California Current ecosystem [pp. 23-24] [pdf. 0.2 Mb] The Hokusei Maru: 53 years of research in the Pacific [pp. 25-28] [pdf. 0.5 Mb] First meeting of the CLIVAR Pacific Panel [pp. 29-30] [pdf. 0.3 Mb] Call for contributions to the North Pacific Ecosystem Status Report [p. 31] [pdf. 0.2 Mb] PICES announcements [p. 32] [pdf. 0.2 Mb]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The state of PICES science - 1999 The status of the Bering Sea: January - July, 1999 The state of the western North Pacific in the second half of 1998 The state of the eastern North Pacific since February 1999 MEQ/WG 8 Practical Workshop Michael M. Mullin - A biography Highlights of Eighth Annual Meeting Mechanism causing the variability of the Japanese sardine population: Achievements of the Bio-Cosmos Project in Japan Climate change, global warming, and the PICES mandate – The need for improved monitoring The new age of China-GLOBEC study GLOBEC activities in Korean waters Aspects of the Global Ocean Observing System (GOOS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction [pdf, 0.17 MB] Warren S. Wooster [pdf, 0.12 MB] PICES - the first decade, and beyond Paul H. LeBlond [pdf, 0.03 MB] The Physical Oceanography and Climate Committee: The first decade D.E. Harrison and Neville Smith [pdf, 0.04 MB] Ocean observing systems and prediction - the next ten years Tsutomu Ikeda and Patricia A. Wheeler [pdf, 0.85 MB] Ocean impacts from the bottom of the food web to the top: Biological Oceanography Committee (BIO) retrospective Timothy R. Parsons [pdf, 0.2 MB] Future needs for biological oceanographic studies in the Pacific Ocean Douglas E. Hay, Richard J. Beamish, George W. Boehlert, Vladimir I. Radchenko, Qi-Sheng Tang, Tokio Wada, Daniel W. Ware and Chang-Ik Zhang [pdf, 0.2 MB] Ten years FIS in PICES: An introspective, retrospective, critical and constructive review of fishery science in PICES Richard F. Addison, John E. Stein and Alexander V. Tkalin [pdf, 0.12 MB] Marine Environmental Committee in review Robie W. Macdonald, Brian Morton, Richard F. Addison and Sophia C. Johannessen [pdf, 1.89 MB] Marine environmental contaminant issues in the North Pacific: What are the dangers and how do we identify them? R. Ian Perry, Anne B. Hollowed and Takashige Sugimoto [pdf, 0.36 MB] The PICES Climate Change and Carrying Capacity Program: Why, how, and what next? List of acronyms [pdf, 0.07 MB] (Document contains 108 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endosymbiosis of algae with invertebrates may be viewed with at least two major orientations. On the one hand, one may focus on the plant and animal as essentially separate organisms living together, as the word symbiosis states. The products which are exchanged between the plant and animal and the effects of the association on either partner are then of particular interest. On the other hand, one may consider the partnership as an entity, and attempt to investigate the physiology, behavior, etc. of the symbiotic association, observing what differences may appear between the "plant-animal" and analogous non-symbiotic organisms. It is the second approach which I have tried to take in this thesis. I have concentrated on some effects of light on symbiotic and aposymbiotic sea anemones of the species Anthopleura elegantissima, particularly with respect to pigmentation and several types of behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major Outcomes from the 2008 PICES Annual Meeting: A Note from the Chairman (pdf, 0.1 Mb) PICES Science – 2008 (pdf, 0.1 Mb) 2008 PICES Awards (pdf, 0.3 Mb) Charles B. Miller – A Selective Biography (pdf, 0.4 Mb) Latest and Upcoming PICES Publications (pdf, 0.1 Mb) 2008 OECOS Workshop in Dalian (pdf, 0.2 Mb) PICES Calendar (pdf, 0.1 Mb) 2008 PICES Workshop on “Climate Scenarios for Ecosystem Modeling (II)” (pdf, 0.1 Mb) PICES/ESSAS Workshop on “Marine Ecosystem Model Inter-Comparisons” (pdf, 0.2 Mb) Highlights of the PICES Seventeenth Annual Meeting (pdf, 0.5 Mb) 2008 PICES Summer School on “Ecosystem-Based Management” (pdf, 0.3 Mb) 4th PICES Workshop on “The Okhotsk Sea and Adjacent Areas” (pdf, 0.2 Mb) PICES WG 21 Rapid Assessment Surveys (pdf, 0.4 Mb) PICES Interns (pdf, 0.3 Mb) PICES @ Oceans in a High CO2 World (pdf, 0.1 Mb) Coping with Global Change in Marine Social–Ecological Systems: An International Symposium (pdf, 0.1 Mb) The State of the Western North Pacific in the First Half of 2008 (pdf, 1.3 Mb) State of the Northeast Pacific through 2008 (pdf, 0.3 Mb) The Bering Sea: Current Status and Recent Events (pdf, 0.2 Mb) An Opinion Born of Years of Observing Timeseries Observations (pdf, 0.1 Mb) New Chairman for the PICES Fishery Science Committee (pdf, 0.1 Mb)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basis for a long-term profitable fishery is a precautionary and environment-compatible use of fish stocks. The fishery management presently models the exploitation through the parameters of fishing mortality and the age at first capture. These two parameters are translated into the technical measures of fishing effort and mesh openings and quotas, which are then used in practice for controlling the fishery. Stock protection can be achieved by reducing the fishing effort, by assigning smaller quotas, by reducing the number of days at sea, or by increasing the mesh opening. The respective protection measures have different effects on the development of the stocks but also on the revenue obtained by the fishery. These alternatives have been examined taking as an example the cod stock in the western Baltic. The optimization goal was the maximization of profit observing at the same time the prerequisites for stock protection according to the precaution approach. For these calculations the same models and data have been used as are beeing used in the stock management of the ACFM of ICES. The response of altered technical measures to the recruitment of cod stock was considered, and a proposal to overcome overfishing of cod in the western Baltic Sea was derived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on "Wave Sensor Technologies" in St. Petersburg, Florida on March 7-9, 2007, hosted by the University of South Florida (USF) College of Marine Science, an ACT partner institution. The primary objectives of this workshop were to: 1) define the present state of wave measurement technologies, 2) identify the major impediments to their advancement, and 3) make strategic recommendations for future development and on the necessary steps to integrate wave measurement sensors into operational coastal ocean observing systems. The participants were from various sectors, including research scientists, technology developers and industry providers, and technology users, such as operational coastal managers and coastal decision makers. Waves consistently are ranked as a critical variable for numerous coastal issues, from maritime transportation to beach erosion to habitat restoration. For the purposes of this workshop, the participants focused on measuring "wind waves" (i.e., waves on the water surface, generated by the wind, restored by gravity and existing between approximately 3 and 30-second periods), although it was recognized that a wide range of both forced and free waves exist on and in the oceans. Also, whereas the workshop put emphasis on the nearshore coastal component of wave measurements, the participants also stressed the importance of open ocean surface waves measurement. Wave sensor technologies that are presently available for both environments include bottom-mounted pressure gauges, surface following buoys, wave staffs, acoustic Doppler current profilers, and shore-based remote sensing radar instruments. One of the recurring themes of workshop discussions was the dichotomous nature of wave data users. The two separate groups, open ocean wave data users and the nearshore/coastal wave data users, have different requirements. Generally, the user requirements increase both in spatial/temporal resolution and precision as one moves closer to shore. Most ocean going mariners are adequately satisfied with measurements of wave period and height and a wave general direction. However, most coastal and nearshore users require at least the first five Fourier parameters ("First 5"): wave energy and the first four directional Fourier coefficients. Furthermore, wave research scientists would like sensors capable of providing measurements beyond the first four Fourier coefficients. It was debated whether or not high precision wave observations in one location can take the place of a less precise measurement at a different location. This could be accomplished by advancing wave models and using wave models to extend data to nearby areas. However, the consensus was that models are no substitution for in situ wave data.[PDF contains 26 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport. Eight recommendations were made by participants at the conclusion of the workshop and are presented here without prioritization: 1. Encourage research toward development of energy scavenging devices of suitable sizes for use in remote sensing packages attached to marine animals. 2. Encourage funding sources for development of new sensor technologies and animal-borne tags. 3. Develop animal-borne environmental sensor platforms that offer more combined systems and improved data recovery methodologies, and expand the geographic scope of complementary fixed sensor arrays. 4. Engage the oceanographic community by: a. Offering a mini workshop at an AGU ocean sciences conference for people interested in developing an ocean carbon program that utilizes animal-borne sensor technology. b. Outreach to chemical oceanographers. 5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be applied to marine sensors (e.g. biomedical field). 6. Encourage the NOAA Permitting Office to: a. Make a more predictable, reliable, and consistent permitting system for using animal platforms. b. Establish an evaluation process. c. Adhere to established standards. 7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms. 8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking as effective samplers of the marine environment, and use of animals as ocean sensor technology platforms. [PDF contains 20 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT. An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters. In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop. This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]