4 resultados para nonlinear error
em Aquatic Commons
Resumo:
New technologies can be riddled with unforeseen sources of error, jeopardizing the validity and application of their advancement. Bioelectrical impedance analysis (BIA) is a new technology in fisheries research that is capable of estimating proximate composition, condition, and energy content in fish quickly, cheaply, and (after calibration) without the need to sacrifice fish. Before BIA can be widely accepted in fisheries science, it is necessary to identify sources of error and determine a means to minimize potential errors with this analysis. We conducted controlled laboratory experiments to identify sources of errors within BIA measurements. We concluded that electrode needle location, procedure deviations, user experience, time after death, and temperature can affect resistance and reactance measurements. Sensitivity analyses showed that errors in predictive estimates of composition can be large (>50%) when these errors are experienced. Adherence to a strict protocol can help avoid these sources of error and provide BIA estimates that are both accurate and precise in a field or laboratory setting.
Resumo:
We have formulated a model for analyzing the measurement error in marine survey abundance estimates by using data from parallel surveys (trawl haul or acoustic measurement). The measurement error is defined as the component of the variability that cannot be explained by covariates such as temperature, depth, bottom type, etc. The method presented is general, but we concentrate on bottom trawl catches of cod (Gadus morhua). Catches of cod from 10 parallel trawling experiments in the Barents Sea with a total of 130 paired hauls were used to estimate the measurement error in trawl hauls. Based on the experimental data, the measurement error is fairly constant in size on the logarithmic scale and is independent of location, time, and fish density. Compared with the total variability of the winter and autumn surveys in the Barents Sea, the measurement error is small (approximately 2–5%, on the log scale, in terms of variance of catch per towed distance). Thus, the cod catch rate is a fairly precise measure of fish density at a given site at a given time.
Resumo:
Time series analysis methods have traditionally helped in identifying the role of various forcing mechanisms in influencing climate change. A challenge to understanding decadal and century-scale climate change has been that the linkages between climate changes and potential forcing mechanisms such as solar variability are often uncertain. However, most studies have focused on the role of climate forcing and climate response within a strictly linear framework. Nonlinear time series analysis procedures provide the opportunity to analyze the role of climate forcing and climate responses between different time scales of climate change. An example is provided by the possible nonlinear response of paleo-ENSO-scale climate changes as identified from coral records to forcing by the solar cycle at longer time scales.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.