41 resultados para non-predator species
em Aquatic Commons
Resumo:
Lake Victoria, in East Africa, has suffered from introductions and invasions of non-native species such as Lates niloticus, various tilapiine species, and Eichornia crassipes since the 1950s. These have had a devastating effect on the natural biological communities. This paper reviews the effects of the introductions on ecology, environment, fisheries and the local human population.
Resumo:
Prior to introduction of non-native fish species into Lakes Victor i a, Kyoga and Nabugabo, the three lakes suppor ted diverse fish fauna representing 13 families consisting of six cichlid genera and fifteen non-cichlid genera. There were about 50 non-cichlid species and over 300 cichlids consisting of mainly haplochromines (Graham 1929, worthington 1929, Greenwood 1960). Many of the species were commercially and scientifically important and provided a rich variety of protein source to choose from. Following introduction of the Nile perch and several tilapiines species, most of the native species were drastically reduced and some have apparently disappeared. The few remaining species appear to be restricted in distribution due to the presence of the Nile perch. They are mainly confined to refugia such as marginal macrophytes, rocky outcrops and small satellite lakes which are separated from the areas of introduction by swamps
Resumo:
The fisher folk used to catch small indigenous species of fish (SIS) from rivers, canals, wetlands and floodplains at little or no cost for their livelihood. Surplus fish was sold at the local market to generate some little capital for the households. The livelihood and consumption of SIS in fishing community of two upazilas viz. Trisal and Ishwarganj under Mymensingh district were studied for 3 months in 2004. Most of the fisher folk of the study areas belong to resource-poor section of the society living below the poverty level. Majority of them had no cultivable land. As professional fishers they face many problems during lean fishing period from January to April due to little or non-availability of fish. Majority of the fisher households consumed SIS three to four days a week. The fisher households of Trisal upazila consumed more small fish than those of Ishwargonj upazila. More than 50% respondents consumed <20 g SIS/day and 20% consumed >40 g SIS/day in Trisal upazila. On the other hand, in Ishwargonj upzila, most of the fisher households (66%) were found to consume <20 g SIS/day. SIS was mostly available from July-December in rivers, wetlands (beels), and canals, and income from fishing was reported to be good. The dominant SIS was Puntius spp., Mystus spp., Anabas testudineus, catfishes, mola, and small prawns. Non-indigenous species like tilapia was also dominant in Trisal upzila where aquaculture practices were well established.
Resumo:
Malya dam had been stocked with several species of Tilapia. However all but the species endemic to the region, T esculentus, made only marginal contributions to the fishery. T. zilli particularly had failed to establish itself, probably because its niche had been previously filled by T. rendalii. Planktivorou Tilapia species predominate in Malya dam but in smaller dams in the region herbivoorous tilapia are relatively more abundant. Six non-cichlid species and one of Haplochromis were found in the dam. Tilapia esculenta the most economically important species, was estimated to grow within 9-10 cm first year and 16-18 cm second year. The largest, specimen caught was 30.5 cm and the smallest mature individual 19 cm. The fish of the dam grew more slowly and matured at a smaller size than those of the same species in Lake Victoria The biological pattern of T. esculenta in Malya dam was similar to that of this species in Lake Victoria.
Resumo:
Natural populations of fish species in Lake Victoria Region (LVR) have under gone dramatic changes including severe reduction in sizes, division of original stocks into disjunct subunits, and segregation into several isolated population units either within a single water body or even worse into separate waters. In addition, these changes have been either preceded or precipitated by introductions of non-indigenous species that out competed the native forms and in case of closely related species genetically swamped them through hybridisation. The latter is especially the case in Nabugabo lakes. Such events lead to fragmentation of populations, which results in reduction in genetic diversity due to genetic drift, inbreeding and reduced or lack of gene flow among independent units. Such phenomena make the continued existence of fisheries stocks in the wild precarious, more so in the face of the competition from exotic species. Species introductions coupled with growing exploitation pressure of the fisheries of these lakes have put the native stocks at risk. Nabugabo lakes harbor cichlid species that are unique to these lakes more so species of the cichlid complex. In this paper the ecological status and genetic viability of key Nabugabo lakes fish species is examined and management options are discussed.
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
In the past few years, large-scale, high-seas driftnet fishing has sparked intense debate and political conflict in many oceanic regions. In the Pacific Ocean the driftnet controversy first emerged in the North Pacific transition zone and subarctic frontal zone, where driftnet vessels from Japan, the Republic of Korea, and Taiwan pursue their target species of neon flying squid. Other North Pacific driftnet fleets from Japan and Taiwan target stocks of tunas and billfishes. Both types of driftnet fishing incidentally kill valued non-target species of marine life, including fish, mammals, birds, and turtles. In response to public concerns about driftnet fishing, government scientists began early on to assemble available information and consider what new data were required to assess impacts on North Pacific marine resources and the broader pelagic ecosystem. Accordingly, a workshop was convened at the NMFS Honolulu Laboratory in May 1988 to review current information on the biology, oceanography, and fisheries of the North Pacific transition zone and subarctic frontal zone. The workshop participants, from the United States and Canada, also developed a strategic plan to guide NMFS in developing a program of driftnet fishery research and impact assessment. This volume contains a selection of scientific review papers presented at the 1988 Honolulu workshop. The papers represent part of the small kernel of information available then, prior to the expansion of cooperative international scientific programs. Subsequent driftnet fishery monitoring and research by the United States, Canada, Japan, Korea, and Taiwan have added much new data. Nevertheless, this collection of papers provides a historical perspective and contains useful information not readily available elsewhere. (PDF file contains 118 pages.)
Resumo:
The sprat of the Baltic Sea is not as short-lived as inother Seas probably because fish predator species arerestricted mainly on cod and salmon. Sea bird popula-tions are much smaller and marine mammals are rare inthe Baltic Sea. The sprat stock biomass is fluctuatingstrongly. The fluctuation is mainly influenced by thestock recruitment and is also dependent on the strengthof the cod stock. After a strong decrease during the1980ies sprat catches increased again from 1992 onwardsand reached a peak with over half a million tonnes in 1997. At about the same time the character of the BalticSea sprat fishery changed from catches mainly for hu-man consumption to catches mainly for industrial pur-poses initiated by the fishery of Sweden. The recentrecord high catches of sprat have been possible only dueto the low level of the cod stock of the main Baltic SeaBasins over some years. A sprat fishery on such a highcatch level might cause conflicts with a recovering codstock in future.
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
This brief article summarizes the ecological role of non-salmonid fishes in Scottish fresh waters. Most government-sponsored research has focused on the ecologically valuable salmonids in this area, yet non-salmonid species are widely distributed in Scotland and play an important ecological role in freshwater ecosystems. The fish fauna of Scotland differs from other parts of the British Isles by being more impoverished following the end of the last Ice Age, ca. 10 000 years ago.
Resumo:
We compared numbers of strikes, proportions of fish that hooked up after strikes, proportions of fish that stayed on hook (retained) after hook up, and numbers of fish caught between circle and J hooks rigged with dead natural fish bait (ballyhoo)and trolled for three oceanic predator species: dolphinfish (Coryphaena hippurus), yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri). Interactions were compared between circle and J hooks fished on 75 trips by two user groups (charter and recreational fishermen). Hooks were affixed to three species-specific leader types most commonly fished in this region: monofilament (dolphinfish), fluorocarbon (tuna), and wire (wahoo). Numbers of fish caught per trip and three potential mechanisms that might inf luence numbers caught (i.e., number of strikes, proportion of fish hooked, and proportion retained) were modeled with generalized linear models that considered hook type, leader type, species, user (fishing) group, and wave height as main effects. Hook type was a main effect at the catch level; generally, more fish were caught on J hooks than on circle hooks. The effect of hook type on strike rates was equivocal. However, J hooks had a greater proportion of hook-ups than did circle hooks. Finally, the proportion of fish retained once hooked was generally equal between hook types. We found similar results when data from additional species were pooled as a “tuna” group and a “mackerel” group. We conclude that J hooks are more effective than circle hooks at the hook-up level and result in greater numbers of troll-caught dolphinfish, tunas
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.
Resumo:
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.
Resumo:
There has been much recent interest in the effects of fishing on habitat and non-target species, as well as in protecting certain areas of the seabed from these effects (e.g. Jennings and Kaiser, 1998; Benaka, 1999; Langton and Auster, 1999; Kaiser and de Groot, 2000). As part of an effort to determine the effectiveness of marine closed areas in promoting recovery of commercial species (e.g. haddock, Melanogrammus aegelfinus; sea scallops, Placopecten magellanicus; yellowtail flounder, Limanda ferruginea; cod, Gadus morhua), nontarget species, and habitat, a multidisciplinary research cruise was conducted by the Northeast Fisheries Science Center (NEFSC), National Marine Fisheries Service. The cruise was conducted in closed area II (CA-II) of the eastern portion of Georges Bank during 19–29 June 2000 (Fig. 1). The area has historically produced high landings of scallops but was closed in 1994 principally for groundfish recovery (Fogarty and Murawski, 1998). The southern portion of the area was reopened to scallop fishing from 15 June to 12 November 1999, and again from 15 June to 15 August 2000. While conducting our planned sampling, we observed scallop viscera (the noncalcareous remains from scallops that have been shucked by commercial fishermen at sea) in the stomachs of several fish species at some of these locations, namely little skate (Raja erinacea), winter skate (R. ocellata), red hake (Urophycis chuss), and longhorn sculpin (Myoxocephalus octodecemspinosus). We examined the stomach contents of a known scavenger, the longhorn sculpin, to evaluate and document the extent of this phenomenon.
Resumo:
Among the commercially valuable species occurring in Lake Victoria the two endemic species of Tilapia, T. esculenta (Graham) and T. variabilis (Boulenger) still provide the basis for the fishery in many areas, though in some places the non-cichlid species are more important, for example in the Kagera river area where large numbers of Labeo victorianus and Schilbe mystus migrate seasonally into the river. Although certain species show these habitat preferences. Most of the coastline of Lake Victoria supports a wide variety of species, all of which contribute to the commercial fishery. Over the past ten years the East African Fisheries Research Organisation has fished experimentally a number of stations within a radius of fifty miles from Jinja. These stations have been selected so as to cover a variety of habitats which range from sheltered bays to exposed coastlines. The records discussed in this paper are the result of fishing operations carried out in Pilkington Bay over the period December 1954 to November 1956. This series of fishing operations was carried out in an attempt to assess the composition of the fish populations contained in this area. To this end a variety of nets of differing mesh sizes were used. Pilkington Bay is about ten square miles in extent and is an irregular and deep indentation on the north coast of Buvuma Island. It lies within the sleeping siclmess area where fishing by Africans is prohibited. When selecting an experimental fishing ground, it is important to have some idea of the amount of commercial fishing being carried out in the area. Throughout the period of this experiment a few African fishermen were seen operating illegally in the area, but it is unlikely that their efforts greatly affected the results obtained. Pilkington Bay was fished by E.A.F.R.O. in 1949 and 1950 (Lowe McConnell 1956) but since then till the present experiment, fishing in the area has been infrequent.