8 resultados para non-ideal source
em Aquatic Commons
Resumo:
Several local groups have come together for this project to addresses water quality concerns in the Gabilan Watershed – also known as the Reclamation Ditch Watershed (Fig. 1.1). These are Moss Landing Marine Laboratories (MLML), the Resource Conservation District of Monterey County (RCDMC), Central Coast Watershed Studies (CCoWS), Return of the Natives (RON), Community Alliance with Family Farmers (CAFF), and Coastal Conservation and Research (CC&R). The primary goal is to reduce non-point source pollution – particularly suspended sediment, nutrients, and pesticides – and thereby improve near-shore coastal waters of Moss Landing Harbor and the Monterey Bay. (Document contains 33 pages)
Resumo:
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)
Resumo:
In January 2006 the Maumee Remedial Action Plan (RAP) Committee submitted a State II Watershed Restoration Plan for the Maumee River Great Lakes Area of Concern (AOC) area located in NW Ohio to the State of Ohio for review and endorsement (MRAC, 2006). The plan was created in order to fulfill the requirements, needs and/or use of five water quality programs including: Ohio Department of Natural Resources (DNR) Watershed Coordinator Program; Ohio EPA Great Lakes RAP Program; Ohio DNR Coastal Non-point Source Pollution Control Program; Ohio EPA Total Maximum Daily Load Program; and US Fish & Wildlife Service Natural Resources Damage Program. The plan is intended to serve as a comprehensive regional management approach for all jurisdictions, agencies, organizations, and individuals who are working to restore the watershed, waterways and associated coastal zone. The plan includes: background information and mapping regarding hydrology, geology, ecoregions, and land use, and identifies key causes and sources for water quality concerns within the six 11-digit hydrological units (HUCs), and one large river unit that comprise the Maumee AOC. Tables were also prepared that contains detailed project lists for each major watershed and was organized to facilitate the prioritization of research and planning efforts. Also key to the plan and project tables is a reference to the Ohio DNR Coastal Management Measures that may benefit from the implementation of an identified project. This paper will examine the development of the measures and their importance for coastal management and watershed planning in the Maumee AOC. (PDF contains 4 pages)
Resumo:
Zostera marina is a member of a widely distributed genus of seagrasses, all commonly called eelgrass. The reported distribution of eelgrass along the east coast of the United States is from Maine to North Carolina. Eelgrass inhabits a variety of coastal habitats, due in part to its ability to tolerate a wide range of environmental parameters. Eelgrass meadows provide habitat, nurseries, and feeding grounds for a number of commercially and ecologically important species, including the bay scallop, Argopecten irradians. In the early 1930’s, a marine event, termed the “wasting disease,” was responsible for catastrophic declines in eelgrass beds of the coastal waters of North America and Europe, with the virtual elimination of Z. marina meadows in the Atlantic basin. Following eelgrass declines, disastrous losses were documented for bay scallop populations, evidence of the importance of eelgrass in supporting healthy scallop stocks. Today, increased turbidity arising from point and non-point source nutrient loading and sediment runoff are the primary threats to eelgrass along the Atlantic coast and, along with recruitment limitation, are likely reasons for the lack of recovery by eelgrass to pre-1930’s levels. Eelgrass is at a historical low for most of the western Atlantic with uncertain prospects for systematic improvement. However, of all the North American seagrasses, eelgrass has a growth rate and strategy that makes it especially conducive to restoration and several states maintain ongoing mapping, monitoring, and restoration programs to enhance and improve this critical resource. The lack of eelgrass recovery in some areas, coupled with increasing anthropogenic impacts to seagrasses over the last century and heavy fishing pressure on scallops which naturally have erratic annual quantities, all point to a fishery with profound challenges for survival.
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
This manual presents geographic information by state of occurrence, and descriptions of the socio-economic impact created by the invasion of non-indigenous and native transplanted animal species in the Laurentian Great Lakes and the coastal waters of the United States. It is not a comprehensive literature review, but rather is intended as a primer for those unfamiliar with the socio-economic impacts of invasive aquatic and marine animals. Readers should also note that the information contained in this manual is current as of its publication date. New information and new species are routinely being added to the wider literature base. Most of the information was gathered from a number of web sites maintained by government agencies, commissions, academic institutions and museums. Additional information was taken from the primary and secondary literature. This manual focuses on socio-economic consequences of invasive species. Thus, ecological impacts, when noted in the literature, are not discussed unless a connection to socio-economic factors can be made. For a majority of the species listed, either the impact of their invasion is not understood, or it is not published in sources surveyed. In the species summaries, sources of information are cited except for information from the U.S. Geological Survey’s (USGS) Nonindigenous Aquatic Species Database http://nas.er.usgs.gov. This website formed the base information used in creating tables on geographic distribution, and in many of the species summaries provided. Thus, whenever information is given without specific author/source and date citation, it has come from this comprehensive source. (PDF contains 90 pages)
Resumo:
Prior to introduction of non-native fish species into Lakes Victor i a, Kyoga and Nabugabo, the three lakes suppor ted diverse fish fauna representing 13 families consisting of six cichlid genera and fifteen non-cichlid genera. There were about 50 non-cichlid species and over 300 cichlids consisting of mainly haplochromines (Graham 1929, worthington 1929, Greenwood 1960). Many of the species were commercially and scientifically important and provided a rich variety of protein source to choose from. Following introduction of the Nile perch and several tilapiines species, most of the native species were drastically reduced and some have apparently disappeared. The few remaining species appear to be restricted in distribution due to the presence of the Nile perch. They are mainly confined to refugia such as marginal macrophytes, rocky outcrops and small satellite lakes which are separated from the areas of introduction by swamps