7 resultados para natural service

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Listening to people, especially those who are poor, and involving them in policy making and decisions about service delivery processes are logical steps in building better services and improving policies aimed at poverty alleviation. This case describes a facilitated advocacy that helped to negotiate and support a role for poor people who farm and fish, to contribute recommendations for changes in services and policies that impact on their lives. The national Government of India’s Department of Animal Husbandry and Dairying and the Indian Council for Agricultural Research, both in the capital Delhi, have been linking with farmers and fishers and state government officials in the eastern states of Jharkhand, Orissa and West Bengal, in partnership with the STREAM Initiative of the intergovernmental Network of Aquaculture Centers in Asia Pacific and with the support of the UK Government Department for International Development, Natural resources Systems Program supporting farmers to have a voice(13 p.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each year, more than 500 motorized vessel groundings cause widespread damage to seagrasses in Florida Keys National Marine Sanctuary (FKNMS). Under Section 312 of the National Marine Sanctuaries Act (NMSA), any party responsible for the loss, injury, or destruction of any Sanctuary resource, including seagrass, is liable to the United States for response costs and resulting damages. As part of the damage assessment process, a cellular automata model is utilized to forecast seagrass recovery rates. Field validation of these forecasts was accomplished by comparing model-predicted percent recovery to that which was observed to be occurring naturally for 30 documented vessel grounding sites. Model recovery forecasts for both Thalassia testudinum and Syringodium filiforme exceeded natural recovery estimates for 93.1% and 89.5% of the sites, respectively. For Halodule wrightii, the number of over- and under-predictions by the model was similar. However, where under-estimation occurred, it was often severe, reflecting the well-known extraordinary growth potential of this opportunistic species. These preliminary findings indicate that the recovery model is consistently generous to Responsible Parties in that the model forecasts a much faster recovery than was observed to occur naturally, particularly for T. testudinum, the dominant seagrass species in the region and the species most often affected. Environmental setting (i.e., location, wave exposure) influences local seagrass landscape pattern and may also play a role in the recovery dynamics for a particular injury site. An examination of the relationship between selected environmental factors and injury recovery dynamics is currently underway. (PDF file contains 20 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological progress, having reached in our time an unprecedented speed, is still increasing the rate of mineral extraction, industrial construction, and the mastering of new kinds of energy is growing. Correspondingly the anthropogenic load on the biosphere is increased and that requires the comprehensive development of monitoring the anthropogenic changes in the natural environment. Among problems resulting from the scientific-technological development, a noticeable place is given to the problem of pure water. Surface land waters proved to be a sensitive link in the natural environment. The hydrobiological service for observations and control of the surface waters is one of the subsystems of the State/Federal Service for Observations and Control of pollution levels in environmental objects, conducted by the USSR State Committee for Hydrometeor- ology and Control of the Natural Environment. This paper summarises the the main principles of the organisation and goals of the national system of monitoring of the state of the natural environment in the USSR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gap Analysis of Marine Ecosystem Data project is a review of available geospatial data which can assist in marine natural resource management for eight park units. The project includes the collection of geospatial information and its incorporation in a single consistent geodatabase format. The project also includes a mapping portal which can be seen at: http://ccma.nos.noaa.gov/explorer/gapanalysis/gap_analysis.html In addition to the collection of geospatial information and mapping portal we have conducted a gap analysis of a standard suite of available information for managing marine resources. Additional gap were identified by interviewing park service staff.