3 resultados para nanoparticles in soil
em Aquatic Commons
Resumo:
A total of 45 ponds used for fish polyculture were investigated in three zones of Bangladesh to identify the differences among the zones in respect to aqua-ecology, culture practices, fish productivity and health management. Four hundred and fifty fish from three zones were clinically examined by naked eye and histopathology. Out of total number of fish examined, 45 fish from Dhaka zones were examined for parasites and bacteria in addition to histopathology. Faded and haemorrhagic gill, skin, fin, scale loss and lesions were observed during fish examination. Aeromonas spp. Pseudomonas spp. and Streptococcus spp. were isolated respectively from 56%, 46% and 39% affected fish. Among the five water quality parameters analyzed, the highest average hardness and alkalinity respectively were recorded in Rajshahi (156 ppm and 142 ppm) followed by Dhaka (146 ppm and 132 ppm) and Chittagong (81 ppm and 90 ppm). The highest average pH was recorded in Mymensingh (7.52) followed by Rajshahi (7.13) and Chittagong (7.05). Water holding capacity of soil in Rajshahi zone was poor compared to other zones and farmers were found to be reluctant to fish farming.
Resumo:
Homestead fish culture is a recent innovation for mass production of fish at backyard in Nigeria. The processes of pond construction often have resulted in soil disturbances, vegetation losses, and creation of new aquatic environment. The paper discusses homestead ponds in Nigeria, their potential impact on the environment which includes erosion, over flooding, pest and disease, accident risk, undesired fossil fuel production, vegetation destruction and fish genetic conservation, strategies for environmental management in relation to pond construction are suggested
Resumo:
Life cycle and population biology of a perennial halophyte Arthrocnemum indicum Willd, was studied from February 1992 to January 1993. During the 12 months, the population was exposed to great variations in soil salinity from 35 to 58 ms/cm2 and soil moisture ranging from flood to drought levels. Seasonal changes in dry weight are directly related to soil salinity stress. When salinity levels become low, the dry matter production increases. A little increase in dry weight from April to July indicates that more negative soil water potentials were limiting plant growth. Proline content increased considerably during the dry season with a corresponding increase in salinity. Water soluble oxalate did not vary much with changes in salinity.