3 resultados para multiscale

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish-habitat associations were examined at three spatial scales in Monterey Bay, California, to determine how benthic habitats and landscape configuration have structured deepwater demersal fish assemblages. Fish counts and habitat variables were quantified by using observer and video data collected from a submersible. Fish responded to benthic habitats at scales ranging from cm’s to km’s. At broad-scales (km’s), habitat strata classified from acoustic maps were a strong predictor of fish assemblage composition. At intermediate-scales (m’s−100 m’s), fish species were associated with specific substratum patch types. At fine-scales (<1 m), microhabitat associations revealed differing degrees of microhabitat specificity, and for some species revealed niche separation within patches. The use of habitat characteristics in ecosystembased management, particularly as a surrogate for species distributions, will depend on resolving fish-habitat associations and habitat complexity over multiple scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of the spatial scale at which marine communities are organized is critical to proper management, yet this is particularly difficult to determine for highly migratory species like sharks. We used shark catch data collected during 2006–09 from fishery-independent bottom-longline surveys, as well as biotic and abiotic explanatory data to identify the factors that affect the distribution of coastal sharks at 2 spatial scales in the northern Gulf of Mexico. Centered principal component analyses (PCAs) were used to visualize the patterns that characterize shark distributions at small (Alabama and Mississippi coast) and large (northern Gulf of Mexico) spatial scales. Environmental data on temperature, salinity, dissolved oxygen (DO), depth, fish and crustacean biomass, and chlorophyll-a (chl-a) concentration were analyzed with normed PCAs at both spatial scales. The relationships between values of shark catch per unit of effort (CPUE) and environmental factors were then analyzed at each scale with co-inertia analysis (COIA). Results from COIA indicated that the degree of agreement between the structure of the environmental and shark data sets was relatively higher at the small spatial scale than at the large one. CPUE of Blacktip Shark (Carcharhinus limbatus) was related positively with crustacean biomass at both spatial scales. Similarly, CPUE of Atlantic Sharpnose Shark (Rhizoprionodon terraenovae) was related positively with chl-a concentration and negatively with DO at both spatial scales. Conversely, distribution of Blacknose Shark (C. acronotus) displayed a contrasting relationship with depth at the 2 scales considered. Our results indicate that the factors influencing the distribution of sharks in the northern Gulf of Mexico are species specific but generally transcend the spatial boundaries used in our analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)