4 resultados para multilocus genotyping
em Aquatic Commons
Resumo:
The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.
Resumo:
Microsatellites are codominantly inherited nuclear-DNA markers (Wright and Bentzen, 1994) that are now commonly used to assess both stock structure and the effective population size of exploited fishes (Turner et al., 2002; Chistiakov et al., 2006; Saillant and Gold, 2006). Multiplexing is the combination of polymerase chain reaction (PCR) amplification products from multiple loci into a single lane of an electrophoretic gel (Olsen et al., 1996; Neff et al., 2000) and is accomplished either by coamplification of multiple loci in a single reaction (Chamberlain et al., 1988) or by combination of products from multiple single-locus PCR amplifications (Olsen et al., 1996). The advantage of multiplexing micro-satellites lies in the significant reduction in both personnel time (labor) and consumable supplies generally required for large genotyping projects (Neff et al., 2000; Renshaw et al., 2006).
Resumo:
This workshop was held at the National Bureau of Fish Genetic Resources and followed on from the Indian mackerel Working group meeting in Colombo (28-29 May, 2012). Activities included; DNA extraction; PCR (Polymerase Chain Reaction) for microsatellites; genotyping microsatellites; data analysis; emerging technologies; and an action plan
Resumo:
The study included: sample collection; microsatellite genotyping and analysis; and preliminary results