7 resultados para moulting
em Aquatic Commons
Resumo:
In studying sexual attraction in gammarids of the group pulex, it has seemed necessary to dissociate the processes of moulting and ovogenesis in order to recognize their respective effects on this phenomenon. For this purpose a synthetic hormone, ecdysterone, was utilized. In the first instance the author followed the action of the hormone on isolated females in vitellogenesis. It was proved that the behaviour of Gammarus pulex and Gammarus fossarum vis-a-vis the ecdysterone used proves to be very close to that of isopods that was observed in Orchestia gammarellus in earlier research. Although they were in vitellogenesis, the females saw their intermoult cycle shortened.
Resumo:
Members of the family Gammaridae are very closely interrelated. There arises the question as to how far they also differ amongst themselves through physiological characteristics. Comparative respiratory and physiological experiments were made on the five euryhaline species Gammarus locusta, G. oceanicus, G. salinus, G. zaddachi and G. duebeni. The respiratory measurements carried out within the framework of this experiment were occupied with the relationships between oxygen consumption and body size depending on salinity. They also had the object of determing the variations in metabolic intensity after an abrupt change in the salt content of the external medium, and to establish the period of time for the process of adaptation. As the experiments were carried out polarographically in a testing plant with continuous flow-through, and the method which was applied permitted continuous recording over prolonged intervals, there could also be carried out comparisons between metabolism at rest and under activity, and the alterations of oxygen consumption during the process of moulting could be measured.
Resumo:
The present paper is concerned with studies on the larval development of two species of crustacean Decapoda: Pachyceles haigae Rodrigues Da Costa, 1960 family Porcellanidae and Chasmagnathus granulata Dana, 1851, family Grapsidae. One preazoea, two zoeae with a total of five sub-stages, a and b, and the second zoea had sub-stages a, b and c. The greatest changes are observed in the transition from the first to the second zoea and from this to the megalopa. During the sub-stages, there occured minor changes, and a net moulting of the cuticle is not observed. The differences in these sub-stages are marked by changes in the number and shape of the appendages.
Resumo:
Artificial Insemination (AI) is a tool for genetic manipulation in the shrimp stocks. It is seen as one of the means for propagating shrimp culture to new areas by controlled reproduction. Attempts at artificial insemination in the dominant closed-thelycum penaeid shrimps species of the area viz. Metapenaeus affinis and Metapenaeus brevicornis were induced in wild adult stocks collected off Mumbai coast. Female specimens were subjected to unilateral eyestalk ablation by pinching so as to induce moulting and maturation. AI was performed two days after moulting on these females when the cuticle was still soft and flexible. Moulting also ensured rejection of initial spermatophores, if present. Response of males to electrical stimulation for spermatophore expulsion was spontaneous. Use of tissue glue for spermatophore retention was found to be unnecessary. Latency period ranged between10-16 days, while spawning occurred within 10-12 days of spermatophore transfer. Three partial spawning were recorded viz., two in Metapenaeus affinis and one in Metapenaeus brevicornis with an average spawning and hatching rates of 30% and 72.3% respectively. Average survival from first nauplius (N1) to one-day old post-larva (PLI) was a meager 3.43%. Use of AI in genetic manipulation of shrimp stocks for aquacultural purposes is indicated.
Resumo:
The larval development of the semiterrestrial sesarmid mangrove crab Neosarmarium trispinosum was studied under laboratory conditions at salinities 0-35%o and constant temperatures of 20-30°C. The larval development consists of five zoeal stages and a megalopa. Larvae survived to the first crab stage at salinities between 15 and 35%o with different percentages. At 0, 5 and 10%o, the larvae died within 12-18 hours without moulting to subsequent stages. The highest survival rate was recorded at 20-25%o and 25-30°C with shortest development duration to the first crab stage ranging from 24-28 days. At the highest salinity (35%o), survival rate was gradually decreased with increasing development duration. There were significant differences (P
Resumo:
P. monodon larvae were studied for the effects of temperature, ammonia, and nitrite on survival. Toxicity levels of nitrite were found to vary with larval stage. Larvae could tolerate ammonia up to about 10 ppm, with the effect more clearly shown by the zoea stage. Survival and growth were not significantly affected by temperature, although moulting was enhanced at temperatures higher than 29 C. Larvae of P. monodon have lower tolerance toward nitrite and ammonia compared to postlarvae. Although high survival was obtained at low levels of nitrite and ammonia, it is still necessary to know their effects on metabolism, in order to examine possible biochemical parameters for diagnosing sublethal toxicity or stress.
Resumo:
An illustrated description is given of the courtship and mating behaviour of P. monodon . Courtship and mating follow three distinct phases: (1) parallel swimming of male and female from the bottom to a height of 20-40 cm over distances of 50 to 80 cm; (2) male turns ventral side up to female; and (3) male turns perpendicular to female, arches body around the female and lifts head and tail. Mating is believed to take place generally at night, following moulting of the female. On the basis of thelycum structure and mating pattern, Penaeus may be divided into two groups: (1) those with a close thelycum in which mating follows moulting, such as P. merguiensis and P. monodon ; and (2) those with open thelycum where mating takes place immediately preceding spawning, as in P. stylirostris and P. vannamei .