10 resultados para model state durations
em Aquatic Commons
Resumo:
The paper examined the Ruwan Kanya Reservoir in Kano State. It gave a background information on the fisheries of the lake. Also discussed is tilapia transplantation from Jakara to Ruwan Kanya reservoir. The transplantation revealed a tremendous improvement on the Lake fisheries species now recorded include Lates niloticus, Tilapia, Hydrocynus, Gnathonemus, Mormyrops mabpterurus and others. The proximity of the Ruwan Kanya Reservoir to Tiga Lake and the tourism resort near it, affords the place a good opportunity to serve as a good sport fishing ground. Procedures for transforming the reservoir to sport fishing ground have been advanced
Resumo:
During the summer of 1997, we surveyed 50 waterbodies in Washington State to determine the distribution of the aquatic weevil Euhrychiopsis lecontei Dietz. We collected data on water quality and the frequency of occurrence of watermilfoil species within selected watermilfoil beds to compare the waterbodies and determine if they were related to the distribution E. lecontei . We found E. lecontei in 14 waterbodies, most of which were in eastern Washington. Only one lake with weevils was located in western Washington. Weevils were associated with both Eurasian ( Myriophyllum spicatum L.) and northern watermilfoil ( M. sibiricum K.). Waterbodies with E. lecontei had significantly higher ( P < 0.05) pH (8.7 ± 0.2) (mean ± 2SE), specific conductance (0.3 ± 0.08 mS cm -1 ) and total alkalinity (132.4 ± 30.8 mg CaCO 3 L -1 ). We also found that weevil presence was related to surface water temperature and waterbody location ( = 24.3, P ≤ 0.001) and of all the models tested, this model provided the best fit (Hosmer- Lemeshow goodness-of-fit = 4.0, P = 0.9). Our results suggest that in Washington State E. lecontei occurs primarily in eastern Washington in waterbodies with pH ≥ 8.2 and specific conductance ≥ 0.2 mS cm -1 . Furthermore, weevil distribution appears to be correlated with waterbody location (eastern versus western Washington) and surface water temperature.
Resumo:
The Cross River State (Nigeria) marine and freshwater artisanal capture fisheries are divided into 4 categories according to the type of resources being exploited. Schaefer's production model is applied to each of the fisheries to estimate the maximum sustainable yields (Ymax). The total potential yield for all the fisheries in natural waters is 178,650 tonnes/year. This potential is unlikely to be achieved as more fishermen are abandoning the occupation due to the scarcity of boats, outboard engines and nets. Even if the full potentials were realized the production would still be short of what the State should produce by about 30.5%. Investment opportunities which, if effected can help to narrow the gap between the available and the desired level of production are enumerated
Resumo:
In a survey conducted to find out the status of integrated rice-cum-fish culture in Niger State, Nigeria, 0.37 ha of Fadama wetlands was utilized for rice-cum-fish culture and at experimental stage. In the case study of this rice-cum-fish model, the Nile Tilapia (Oreochromis niloticus) was involved. The result was that 1,4720 kg/ha/yr could be produced using chick manure application under rice-cum-fish culture model. The available records reveal that 233,079 ha out of 495,000 ha of estimated Fadama in Niger State was used for rice cultivation in 1997. If 233,079 ha were to be used for integrated rice-cum fish culture, it is estimated that 343,092 mt of fish (Oreochromis niloticus) could be produced per year. The fish demand in Niger State in 2002 was 50,000 mt. The NPK application under rice-cum-fish production gave the best rice production estimated at 43,968.0 kg/ha/yr. The percentage increase in rice yield as well as increase in net income due to introduction of fish was 10.1 % and 54.4% respectively. The culture system is therefore recommended for adoption towards greater participation in aquaculture development by the farmers
Resumo:
Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.
Resumo:
Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.
Resumo:
We report a Monte Carlo representation of the long-term inter-annual variability of monthly snowfall on a detailed (1 km) grid of points throughout the southwest. An extension of the local climate model of the southwestern United States (Stamm and Craig 1992) provides spatially based estimates of mean and variance of monthly temperature and precipitation. The mean is the expected value from a canonical regression using independent variables that represent controls on climate in this area, including orography. Variance is computed as the standard error of the prediction and provides site-specific measures of (1) natural sources of variation and (2) errors due to limitations of the data and poor distribution of climate stations. Simulation of monthly temperature and precipitation over a sequence of years is achieved by drawing from a bivariate normal distribution. The conditional expectation of precipitation. given temperature in each month, is the basis of a numerical integration of the normal probability distribution of log precipitation below a threshold temperature (3°C) to determine snowfall as a percent of total precipitation. Snowfall predictions are tested at stations for which long-term records are available. At Donner Memorial State Park (elevation 1811 meters) a 34-year simulation - matching the length of instrumental record - is within 15 percent of observed for mean annual snowfall. We also compute resulting snowpack using a variation of the model of Martinec et al. (1983). This allows additional tests by examining spatial patterns of predicted snowfall and snowpack and their hydrologic implications.
Resumo:
There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Current projections of the response of the biosphere to global climatic change indicate as much as 50 to 90% spatial displacement of extratropical biomes. The mechanism of spatial shift could be dominated either by competitive displacement of northern biomes by southern biomes or by drought-induced dieback of areas susceptible to change. The current suite of global biosphere models cannot distinguish between these two processes, hence the need for a mechanistically based biome model. The first steps have been taken toward development of a rule-based, mechanistic model of regional biomes at a continental scale. ... The model is in an early stage of development and will require several enhancements, including: explicit simulation of potential evapotranspiration, extension to boreal and tropical biomes, a shift from steady-state to transient dynamics, and validation on other continents.
Resumo:
The wave data collected on board Ins Kistna from Bay of Bengal during July to August, 1964 and January, February and April, 1965 are presented. The wave parameters are analyzed and given in a form most suitable for model testing of ships. The variation of wave height with Beaufort number is remarkable. Wave periods from 2 to 10 seconds are observed with maximum frequency in the range of 2 to 5 seconds. The heights and period obtained are compared with those obtained by previous workers for the North Atlantic region and Bay of Bengal. The influence of the wave period 2 to 5 seconds on the rolling, pitching and heaving periods of medium size vessels is also discussed.