15 resultados para mitochondrial proteome

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary associations between closely related fish species, both contemporary and historical, are frequently assessed by using molecular markers, such as microsatellites. Here, the presence and variability of microsatellite loci in two closely related species of marine fishes, sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus), are explored by using heterologous primers from red drum (Sciaenops ocellatus). Data from these loci are used in conjunction with morphological characters and mitochondrial DNA haplotypes to explore the extent of genetic exchange between species offshore of Galveston Bay, TX. Despite seasonal overlap in distribution, low genetic divergence at microsatellite loci, and similar life history parameters of C. arenarius and C. nothus, all three data sets indicated that hybridization between these species does not occur or occurs only rarely and that historical admixture in Galveston Bay after divergence between these species was unlikely. These results shed light upon the evolutionary history of these fishes and highlight the genetic properties of each species that are influenced by their life history and ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular markers based on mitochondrial DNA (mtDNA) are extensively used to study genetic relationships. mtDNA has been used in phylogenetic studies to understand the evolutionary history of species because it is maternally inherited and is not subject to genetic recombination (Gyllensten et al., 1991). The high mutation rate of mtDNA makes it a useful tool for differentiating between closely related species (Brown et al., 1979)—a tool that is especially important when significant variations occur between species, but not within species (Hill et al., 2001; Blair et al., 2006; Chow et al., 2006a).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval and juvenile rockfishes (Sebastes spp.) are difficult to identify using morphological characters. We developed a key based on sizes of restriction endonuclease fragments of the NADH dehydrogenase-3 and -4 (ND3/ND4) and 12S and 16S ribosomal RNA (12S/16S) mitochondrial regions. The key makes use of variation in the ND3/ND4 region. Restriction endonuclease Dde I variation can corroborate identifications, as can 12S/16S variation. The key, based on 71 species, includes most North American taxa, several Asian species, and Sebastolobus alascanus and Helicolenus hilgendorfi that are closely related to rockfishes. Fifty-eight of 71 rockfish species in our database can be distinguished unequivocally, using one to five restriction enzymes; identities of the remaining species are narrowed to small groups: 1) S. polyspinis, S. crameri, and S. ciliatus or variabilis (the two species could not be distinguished and were considered as a single species) ; 2) S. chlorostictus, S. eos, and S. rosenblatti; 3) S. entomelas and S. mystinus; 4)S. emphaeus, S. variegatus, and S. wilsoni; and 5) S. carnatus and S. chrysomelas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of a study of genetic variation in the Vietnamese strains of the common carp (Cyprinus carpio L.) using direct DNA sequencing of mitochondrial control and ATPase6/8 gene regions, samples from a number of other countries were analyzed for comparison. Results show that the levels of sequence divergence in common carp is low on a global scale, with the Asian carp having the highest diversity while Koi and European carp are invariant. A genealogical analysis supports a close relationship among Vietnamese, Koi, Chinese Color and, to a lesser extent, European carp. Koi carp appear to have originated from a strain of Chinese red carp. There is considerable scope to extend this research through the analysis of additional samples of carp from around the world, especially from China, in order to generate a comprehensive global genealogy of common carp strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular-based approaches for shark species identification have been driven largely by issues specific to the fishery. In an effort to establish a more comprehensive identification data set, we investigated DNA sequence variation of a 1.4-kb region from the mitochondrial genome covering partial sequences from the 12S rDNA, 16S rDNA, and the complete valine tRNA from 35 shark species from the Atlantic fishery. Generally, within-species variability was low in relation to interspecific divergence because species haloptypes formed monophyletic groups. Phylogenetic analyses resolved ordinal relationships among Carcharhiniformes and Lamniformes, and revealed support for the families Sphyrnidae and Triakidae (within Carcharhiniformes) and Lamnidae and Alopidae (within Lamniformes). The combination of limited intraspecific variability and sufficient between-species divergence indicates that this locus is suitable for species identification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Independent molecular markers based on mitochondrial and nuclear DNA were developed to provide positive identification of istiophorid and xiphiid billfishes (marlins, spearfishes, sailfish, and swordfish). Both classes of markers were based on amplification of short segments (<1.7 kb) of DNA by the polymerase chain reaction and subsequent digestion with informative restriction endonucleases. Candidate markers were evaluated for their ability to discriminate among the different species and the level of intraspecific variation they exhibited. The selected markers require no more than two restriction digestions to allow unambiguous identification, although it was not possible to distinguish between white marlin and striped marlin with any of the genetic characters screened in our study. Individuals collected from throughout each species’ range were surveyed with the selected markers demonstrating low levels of intraspecific character variation within species. The resulting keys provide two independent means for the forensic identification of fillets and for specific identification of early life history stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial sequences of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes were used for species identification and estimating phylogenetic relationship among three commercially important Ompok species viz. O. Pabda, O. pabo and O. bimaculatus. The sequence analysis of Cyt b (1118bp) and 16S rRNA (569 & 570bp) genes revealed that O. pabda, O. pabo & 0. bimaculatus were genetically distinct species and they exhibited identical phylogenetic relationship. The present study discussed usefulness of mtDNA genes (Cyt b & 16S rRNA) in resolving taxonomic ambiguity and estimating phylogenetics relationship.