2 resultados para misspecification
em Aquatic Commons
Resumo:
The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.
Resumo:
Recreational fisheries in the waters off the northeast U.S. target a variety of pelagic and demersal fish species, and catch and effort data sampled from recreational fisheries are a critical component of the information used in resource evaluation and management. Standardized indices of stock abundance developed from recreational fishery catch rates are routinely used in stock assessments. The statistical properties of both simulated and empirical recreational fishery catch-rate data such as those collected by the National Marine Fisheries Service (NMFS) Marine Recreational Fishery Statistics Survey (MRFSS) are examined, and the potential effects of different assumptions about the error structure of the catch-rate frequency distributions in computing indices of stock abundance are evaluated. Recreational fishery catch distributions sampled by the MRFSS are highly contagious and overdispersed in relation to the normal distribution and are generally best characterized by the Poisson or negative binomial distributions. The modeling of both the simulated and empirical MRFSS catch rates indicates that one may draw erroneous conclusions about stock trends by assuming the wrong error distribution in procedures used to developed standardized indices of stock abundance. The results demonstrate the importance of considering not only the overall model fit and significance of classification effects, but also the possible effects of model misspecification, when determining the most appropriate model construction.