3 resultados para milk protein synthesis
em Aquatic Commons
Resumo:
Fish is a valuable nutritional source witch use of it in daily meal has a beneficial role on nutritional needs supply and also causes mental and physical health especially in people who have protein and food deficiencies. Unfortunately, per capita consumption of sea foods in Iran is 5.5Kg witch is very lower than world standards. So, study on fish ice cream formulation, by use of fish protein concentrate (FPC) instead of milk protein, had done to make variation in sea foods products and also increase per capita consumption of these kinds of foods. FPC has very high protein concentration and a lot of necessary Also it's protein is very digestible amino acids like lysine and methionine with highly biological value and it's PER in compare with casein PER is high. At first fish protein concentrate type A produced from silver carp in three steps by the extraction with isopropyl alcohol solvent and heat. Microbiological and physicochemical specifications of produced FPC by rules of FDA and FAO were accepted. Finally according to panel test results, substitution of 30 percent of milk with FPC is acceptable. Also microbiological and physicochemical specifications of product were tested and results in compare with national standards of Iran were accepted.
Resumo:
Specific activities of acid, alkaline and neutral proteases in liver, muscle, brain, and gill of fish exposed to 50 ppm ambient carbamide for 15, 30 and 60 days and in control were estimated. It was observed that carbamide even at low concentration of 50 ppm inhibited proteolysis and favoured protein synthesis.
Resumo:
This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution.