4 resultados para metal (II)-azo complex
em Aquatic Commons
Resumo:
Inlets which require frequent channel dredging due to gradual shoaling, exhibit migration, or shoal up during storms, are in general unstable and pose a problem to the engineer. This problem of inlet stability is a complex one, because of the rather large number of variables that go into defining stability. The reference here is to inlets on sandy coasts only, because the absence of sand or similar sedimentary material the problem does not arise. Shell is also found in varying proportions with sand. Some of this is. new, whereas in some areas it is ancient reworked material whose size distribution is close to that of the sand with which it is associated. (PDF has 24 pages.)
Resumo:
From May 22 to June 4, 2006, NOAA scientists led a research cruise using the ROPOS Remotely Operated Vehicle (ROV) to conduct a series of dives at targeted sites in the Olympic Coast National Marine Sanctuary (OCNMS) with the goal of documenting deep coral and sponge communities. Dive sites were selected from areas for which OCNMS had side scan sonar data indicating the presence of hard or complex substrate. The team completed 11 dives in sanctuary waters ranging from six to 52 hours in length, at depths ranging from 100 to 650 meters. Transect surveys were completed at 15 pre-selected sites, with additional observations made at five other sites. The survey locations included sites both inside and outside the Essential Fish Habitat (EFH) Conservation Area, known as Olympic 2, established by the Pacific Fishery Management Council, enacted on June 12, 2006. Bottom trawling is prohibited in the Olympic 2 Conservation Area for nontribal fishermen. The Conservation Area covers 159.4 square nautical miles or about 15 percent of the sanctuary. Several species of corals and sponges were documented at 14 of the 15 sites surveyed, at sites both inside and outside the Conservation Area, including numerous gorgonians and the stony corals Lophelia pertusa and Desmophyllum dianthus, as well as small patches of the reef building sponge Farrea occa. The team also documented Lophelia sp. and Desmophyllum sp. coral rubble, dead gorgonians, lost fishing gear, and other anthropogenic debris, supporting concerns over potential risks of environmental disturbances to coral health. (PDF contains 60 pages.)
Resumo:
NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology.
Resumo:
Major histocompatibility complex genes are thought to be involved in allogeneic graft rejection but not many reports are available on their functional analysis in fish. Analysis of available sequences of MHC genes suggests functions in antigen presentation similar to those found in higher vertebrates. In mammals, the MHC class I and class II molecules are major determinants of allogeneic graft rejection due to their polymorphism in conjunction with their antigen presenting function. In fish, MHC class H molecules are found to be involved in rejection of allogeneic scale grafts. The present study was designed to investigate the involvement of MHC class I molecules in allograft rejection. Erythrocytes were collected from donors of rainbow trout expressed different class MHC class I alleles, stained with two dyes, mixed and grafted to the recipients that were of the same sibling group as the donors. The grafts were rejected by allogeneic recipients and the MHC class I linkage group was the major determinant for the rejection.