11 resultados para mechanical
em Aquatic Commons
Resumo:
We evaluated four methods to control smooth cordgrass (Spartina alterniflora Loisel), hereafter spartina, in Willapa Bay, Washington: mowing, mowing plus herbicide combination, herbicide only for clones, and aerial application of herbicide for meadows. (PDF has 7 pages.)
Resumo:
We examined the impacts of mechanical shredding (i.e.. shredding plants and leaving biomass in the system) of the water chestnut (Trapa natans) on water quality and nutrient mobilization in a control and experimental site in Lake Champlain (Vermont-New York). A 1-ha plot was mechanically shredded within 1 h on 26 July, 1999. Broken plant material was initially concentrated on the lake surface of the experimental station after shredding, and was noticeable on the lake surface for 19 d. Over a two week period after shredding. concentrations of total nitrogen (N) and phosphorus (P), and soluble reactive P increased in the lower water column of the experimental station, coinciding with decomposition of water chestnut. Sediments in the control and experimental stations exhibited vet-v low rates of N and P release and could not account for increases in nutrient concentrations in the water column after mechanical shredding. Shredded plant material deployed in mesh bags at the experimental station lost similar to 70% of their total mass, and 42%, N and 70% P within 14 d. indicating Substantial nutrient mobilization via autolysis and decomposition. Chlorophyll a concentrations increased to 35 g/L at the experimental station on day 7 after shredding, compared to a concentration of 4 g/L at the control station. suggesting uptake of mobilized nutrients by phytoplankton. Disruption Of the Surface canopy of water chestnut by shredding was associated with marked increases in turbidity and dissolved oxygen, suggesting increased mixing at the experimental site.
Resumo:
Mechanical weed harvesting has been used to control nuisance vegetation in Lake Keesus since 1979. Fish, turtles, and amphibians often become entangled in the vegetation and are incidentally removed from the lake while harvesting weeds. Mechanical harvesting removed 2 to 8% of the standing crop of juvenile fish in harvested areas in Saratoga Lake, New York (Mikol 1985) and 32% of the fish population in harvested areas in Orange Lake, Florida, representing an estimated replacement value of $6000 per ha (Haller et al. 19890). Engle (1990) found mechanical harvesting removed 21,000 to 31,000 fish per year from Lake Halverson, Wisconsin, representing 25% of the fry in the lake. Little other current information has been published concerning aquatic vertebrate removal by mechanical weed harvesting in Wisconsin, though it is a commonly used management tool. Additionally, only Engle (1990) reported information on the removal of turtles relative to weed harvesting, but none on amphibians. The objective of this study was to document the number, species, and size of vertebrates removed by mechanically harvesting weeds in Lake Keesus.
Resumo:
The impact of mechanical stresses upon ichthyoplankton entrained in power plant cooling systems has long been considered negligible. Arguments and evidence exist, however, to show that such a supposition is not universally true, especially in nuclear power plants. The mechanisms of mechanical damage can be detailed in terms of pressure change, acceleration, and shear stress with in the fluid flow field. Laboratory efforts to quantify the effects of mechanical stress have been very sparse. A well-planned bioassay is urgently needed. (PDF has 11 pages.)
Resumo:
Based on the recovery rates for Thalassia testudinum measured in this study for scars of these excavation depths and assuming a linear recovery horizon, we estimate that it would take ~ 6.9 years (95% CI. = 5.4 to 9.6 years) for T. testudinum to return to the same density as recorded for the adjacent undisturbed population. The application of water soluble fertilizers and plant growth hormones by mechanical injection into the sediments adjacent to ten propellor scars at Lignumvitae State Botanical Site did not significantly increase the recovery rate of Thalassia testudinum or Halodule wrightii. An alternative method of fertilization and restoration of propellor scars was also tested by a using a method of “compressed succession” where Halodule wrightii is substituted for T. testudinum in the initial stages of restoration. Bird roosting stakes were placed among H.wrightii bare root plantings in prop scars to facilitate the defecation of nitrogen and phosphorus enriched feces. In contrast to the fertilizer injection method, the bird stakes produced extremely high recovery rates of transplanted H. wrightii. We conclude that use of a fertilizer/hormone injection machine in the manner described here is not a feasible means of enhancing T. testudinum recovery in propellor scars on soft bottom carbonate sediments. Existing techniques such as the bird stake approach provide a reliable, and inexpensive alternative method that should be considered for application to restoration of seagrasses in these environments. Document contains 40 pages)
Resumo:
The paper describes the uniqueness and invasiveness of water hyacinth (Eichhornia crassipes) on Lake Kainji (Nigeria). The mechanical blocking device design concept based on the Kainji Lake flooding regime is also highlighted. Water hyacinth coverage, that was over 23% at high water in level in 1994, was reduced to 0.75% in the same period in 2000. Although this feat cannot be wholly ascribed to mechanical control effort alone, the first year of the device's full operation more than 1.04 million kg of fresh weight of water hyacinth were trapped, collected and deposited in two separate dumping pits, each at about 1 km off the shoreline of either side of the Lake. On further analysis over a period of one year of uncleared inflow of water hyacinth indicated the effectiveness of the bloom. Recommendations are advanced for the use of such local but highly technical knowledge to control floating water hyacinth that is vastly taking over the intricate network of Nigerian water systems and within the West African sub-region
Resumo:
It is generally accepted by fish culturists that salmonid eggs are sensitive to mechanical shock and that the sensitivity varies with the stage of development of the eggs. In general, the period of greatest sensitivity is thought to occur between fertilization and ”eyeing”. However, it is reasonable to expect that, during a period (perhaps of several hours) following fertilization, sensitivity will be low because in nature during this period the eggs may be subject to some mechanical shock caused by the parent fish covering them with gravel. In 1983-4 and 1984-5 experiments were performed on brown trout (Salmo trutta L.) eggs to examine the effect of a standard mechanical shock (c. 2,500 eggs in 1983-4 and c. 8,400 eggs in 1984-5) at various stages of development upon survival to hatching and time of hatching.The results of these experiments are reported in this study.
Resumo:
This paper embodies details and method of operation of a mechanical device developed for eradication of submerged aquatic weeds. The economics of operation is also discussed.