41 resultados para marsh plants
em Aquatic Commons
Photographic analysis of natural and impounded salt marsh in the vicinity of Merritt Island, Florida
Resumo:
Qualitative analyses of available photographs and maps of Merritt Island, Florida provide a large-scale, historical perspective of ecological changes of the marshes in the vicinity. Sites that deserve closer scrutiny can be identified. Secondarily, such an analysis provides a geographical orientation essential for communication not only between newcomers and those familiar with the area, but also among those familiar with the area but who refer to sites by differing methods. Photographs and maps from various sources were examined. Below are listed what we consider to be the most useful subset of these for ecological and geographical assessment of salt marsh impoundments on Merritt Island, Florida. (Document has 25 pages.)
Resumo:
Fossil flora described in the present report is too limited for purposes of exact correlation, which may be expected to be settled by the marine faunas present at most horizons in the Isthmian region. Accompanying table of distribution will show that from the oldest (Hohio) to the youngest (Gatun) plant-bearing formations there is no observable difference in floral facies. This so-called Oligocence series of formations does not represent any great interval of time. (39 page document)
Resumo:
Enclosed is a bibliography of 556 published articles, technical reports, theses, dissertations, and books that form the basis for a conceptual model of salt marsh management on Merritt Island, Florida (Section 1). A copy of each item is available on file at the Florida Cooperative Fish and Wildlife Research Unit, Gainesville. Some relevant proprietary items and unpublished drafts have not been included pending permission of the authors. We will continue to add pertinent references to our bibliography and files. Currently, some topics are represented by very few items. As our synthesis develops, we will be able to indicate a subset of papers most pertinent to an understanding of the ecology and management of Merritt Island salt marshes. (98 page document)
Resumo:
Diking and holding water on salt marshes ("impounding" the marsh) is a management technique used on Merritt Island National Wildlife Refuge (MINWR) and elsewhere in the Southeast to: a) prevent the reproduction of saltmarsh mosquitos, and b) attract wintertering waterfowl and other marsh, shore, and wading birds. Because of concern that diking and holding water may interfere with the production of estuarine fish and shellfish, impoundment managers are being asked to consider altering management protocol to reduce or eliminate any such negative influence. How to change protocol and preserve effective mosquito control and wildlife management is a decision of great complexity because: a) the relationships between estuarine organisms and the fringing salt marshes at the land-water interface are complex, and b) impounded marshes are currently good habitat for a variety of species of fish and wildlife. Most data collection by scientists and managers in the area has not been focused on this particular problem. Furthermore, collection of needed data may not be possible before changes in protocol are demanded. Therefore, the purpose of this document is two-fold: 1) to suggest management alternatives, given existing information, and 2) to help identify research needs that have a high probability of leading to improved simultaneous management of mosquitos, waterfowl, other wildlife, freshwater fish, and estuarine fish and shellfish on the marshland of the Merritt Island National Wildlife Refuge. (92 page document)
Resumo:
Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)
Resumo:
The effects of the grass carp (Ctenopharyngodon idella Val.)on aquatic plant biomass, water quality, phytoplankton, chlorophyll a, zooplankton and benthic fauna were investigated between May and September 2000 in earthen ponds at Cifteler- Sakaryabasi Aquaculture and Research Station. (PDF has 8 pages)
Resumo:
Salvinia (Salvinia minima Willd.) is a water fern found in Florida waters, usually associated with Lemna and other small free-floating species. Due to its buoyancy and mat-forming abilities, it is spread by moving waters. In 1994, salvinia was reported to be present in 247 water bodies in the state (out of 451 surveyed public waters, Schardt 1997). It is a small, rapidly growing species that can become a nuisance due to its explosive growth rates and its ability to shade underwater life (Oliver 1993). Any efforts toward management of salvinia populations must consider that, in reasonable amounts, its presence is desirable since it plays an important role in the overall ecosystem balance. New management alternatives need to be explored besides the conventional herbicide treatments; for example, it has been shown that the growth of S. molesta can be inhibited by extracts of the tropical weed parthenium (Parthenium hysterophorus) and its purified toxin parthenin (Pande 1994, 1996). We believe that cattail, Typha spp. may be a candidate for control of S. minima infestations. Cattail is an aggressive aquatic plant, and has the ability to expand over areas that weren't previously occupied by other species (Gallardo et al. 1998a and references cited there). In South Florida, T. domingensis is a natural component of the Everglades ecosystem, but in many cases it has become the dominant marsh species, outcompeting other native plants. In Florida public waters, this cattail species is the most dominant emergent species of aquatic plants (Schardt 1997). Several factors enable it to accomplish opportunistic expansion, including size, growth habits, adaptability to changes in the surroundings, and the release of compounds that can prevent the growth and development of other species. We have been concerned in the past with the inhibitory effects of the T. domingensis extracts, and the phenolic compounds mentioned before, towards the growth and propagation of S. minima (Gallardo et al. 1998b). This investigation deals with the impact of cattail materials on the rates of oxygen production of salvinia, as determined through a series of Warburg experiments (Martin et al. 1987, Prindle and Martin 1996).
Resumo:
Carfentrazone-ethyl (CE) is a reduced risk herbicide that is currently being evaluated for the control of aquatic weeds. Greenhouse trials were conducted to determine efficacy of CE on water hyacinth ( Eichhornia crassipes (Mart.) Solms- Laub.), water lettuce ( Pistia stratiotes L.), salvinia ( Salvinia minima Baker) and landoltia (Landoltia punctata (G. Mey.) Les & D. J. Crawford ) . CE controlled water lettuce, water hyacinth and salvinia at rates less than the maximum proposed use rate of 224 g ha -1 . Water lettuce was the most susceptible to CE with an EC 90 of 26.9 and 33.0 g ha -1 in two separate trials. Water hyacinth EC 90 values were calculated to be 86.2 to 116.3 g ha -1 , and salvinia had a similar susceptibility to water hyacinth with an EC 90 of 79.1 g ha -1 . Landoltia was not adequately controlled at the rates evaluated. In addition, CE was applied to one-half of a 0.08 ha pond located in North Central, Florida to determine dissipation rates in water and hydrosoil when applied at an equivalent rate of 224 g ha -1 . The half-life of CE plus the primary metabolite, CE-chloropropionic acid, was calculated to be 83.0 h from the whole pond, and no residues were detected in water above the limit of quantification (5 μg L -1 ) 168 h after treatment. CE dissipated rapidly from the water column, did not occur in the sediment above the levels of quantification, and in greenhouse studies effectively controlled three species of aquatic weeds at relatively low rates.(PDF contains 6 pages.)
Resumo:
Biological control of exotic plant populations with native organisms appears to be increasing, even though its success to date has been limited. Although many researchers and managers feel that native organisms are easier to use and present less risk to the environment this may not be true. Developing a successful management program with a native insect is dependent on a number of critical factors that need to be considered. Information is needed on the feeding preference of the agent, agent effectiveness, environmental regulation of the agent, unique requirements of the agent, population maintenance of the agent, and time to desired impact. By understanding these factors, researchers and managers can develop a detailed protocol for using the native biological control agent for a specific target plant. . We found E. lecontei in 14 waterbodies, most of which were in eastern Washington. Only one lake with weevils was located in western Washington. Weevils were associated with both Eurasian ( Myriophyllum spicatum L.) and northern watermilfoil ( M. sibiricum K.). Waterbodies with E. lecontei had significantly higher ( P < 0.05) pH (8.7 ± 0.2) (mean ± 2SE), specific conductance (0.3 ± 0.08 mS cm -1 ) and total alkalinity (132.4 ± 30.8 mg CaCO 3 L -1 ). We also found that weevil presence was related to surface water temperature and waterbody location ( = 24.3, P ≤ 0.001) and of all the models tested, this model provided the best fit (Hosmer- Lemeshow goodness-of-fit = 4.0, P = 0.9). Our results suggest that in Washington State E. lecontei occurs primarily in eastern Washington in waterbodies with pH ≥ 8.2 and specific conductance ≥ 0.2 mS cm -1 . Furthermore, weevil distribution appears to be correlated with waterbody location (eastern versus western Washington) and surface water temperature.
Resumo:
(PDF has 125 pages.)
Resumo:
Studies were carried out using 96hr static toxicity bioassay to determine the effect of lethal concentrations of extracts from two local plants Tephrosia vogelii and Parkia clappertoniana which are known fish poison, on a species of mud fish. Clarias gariepinus Phytochemical analysis of the plant extracts was done and the extract from T. vogelii was found to contain alkaloids, tannins and flavonoids, while the extract from P. clappertoniana was formed to contain alkaloids tannins and saponins. Experimental fish were exposed to test water separately polluted by varying concentrations of extraction of both plant species ranging from 0.50mgl super(-1), 1.50mgl super(-1), 2.50mgl super(-1), 3.0mgl super(-1), 5.00mgl super(-1), 10.00mgl super(-1) in the case of T. vogelii and 5.00mgl super(-1), 7.50mgl super(-1), 10.00mgl super(-1), 15.00mgl super(-1), 20.00mgl super(-1) and 30.00mgl super(-1) in the case of P. clappertaniana. Behavioural hispathological and heamatological examinations were made. Both plant extracts were found to have lethal effects at the higher concentrations, affecting the gills and the central nervous system as well as having a depressive effect on the total count and increasing platelet and white blood cell count. Symptoms of toxicosis observed include, initial inactivation agitated swimming, tumbling movement air gulping, increased opercular beat and period of quiescence/knockdown before death. Marked differences were also observed in the hematological and histopathological analysis of poisoned fish. Lower concentrations of the extracts had sub lethal effects on the fish, which manifested as zigzag movement air gulping increased opercular movement etc. None of these effects were observed in the control experiment
Resumo:
Malta, situated in the Mediterranean Sea south of Sicily, is a small island of less than 300 km2. Two hundred years ago Malta was a wet and sodden country. The limestone was like a sponge, with numerous perennial springs, great and small, and so full of water that most flat areas did not drain, but were marsh. Water from springs, rivers and marshes was in ample supply. In the space of two centuries, Malta's rivers have passed from being good, spring-regulated watercourses with a mixed community of clean limewater plants, to the present-day situation where many if not all are on the verge of extinction. This is the result of human impact, not climate change, and is set to continue and increase. Unfortunately the best wetland-type valley communities were scheduled to be destroyed in 1997 but, after a change of Government and vigorous representations, these may now be spared. However, there is at least a great opportunity to prevent further fragmentation of remaining rivers and to reclaim some of the fragmented portions.
Resumo:
The importance of ponds for biodiversity in Britain has been demonstrated by a number of studies. However, most of the research and interest has been directed at permanent waterbodies, and temporary ponds have been largely neglected. In this article the author present some preliminary findings from a project which aims to fill some of the many gaps in our knowledge of temporary ponds in Britain. The project, which runs for three years until the end of 2001, aims specifically to investigate the ecology of temporary ponds in England and Wales by describing (i) their wetland plant and macroinvertebrate communities, (ii) their physico-chemical characteristics, and (iii) their value as a biodiversity resource. The article focuses on the assessment of temporary ponds as a biodiversity resource and briefly considers aspects of species richness, rarity and distinctiveness. Where possible, temporary ponds are compared with other waterbody types, mainly permanent ponds from the National Pond Survey (NPS), to give the results a broader context.