16 resultados para joint property
em Aquatic Commons
Resumo:
In the spring of 2001, NOAA’s National Marine Sanctuary Program (NMSP) and National Centers for Coastal Ocean Science (NCCOS), in consultation with the National Marine Fisheries Service (NMFS), launched a 24-month effort to define and assess biogeographic patterns of selected marine species found within and adjacent to the boundaries of three west coast National Marine Sanctuaries. These sanctuaries, Monterey Bay, Gulf of the Farallones, and Cordell Bank are conducting a joint review process to update sanctuary management plans. The management plans for these sanctuaries have not been updated for over ten years and the status of the natural resources and their management issues in and around the sanctuaries may have changed. In addition, significant accomplishments in research and resource assessments have been made within the region. Thus, it is important to incorporate new and expanding knowledge into the revised management plans for these Sanctuaries.
Resumo:
During 1973-88, 3,661 marine mammals of 17 species were reported as incidental catch by U.S. fishery observers aboard foreign and joint venture trawl vessels in the U.S. Exclusive Economic Zone in the North Pacific Ocean and the Bering Sea. Northern sea lions (Eumetopias jubatus) accounted for 90% of the reported incidental mortality in the Gulf of Alaska and eastern Bering Sea. Nearly half of these sea lions were taken in trawl nets in the Shelikof Strait, Alaska, joint venture fishery during 1982-84. However, high incidental mortality rates (>25 sea lions per 10,000 metric tons of groundfish catch) also occurred in the foreign fisheries near Kodiak Island and in the Aleutian Islands area in earlier years. Estimated annual mortality of incidentally caught northern sea lions in Alaska declined from 1,000 to 2,000 animals per year during the early 1970s and 1982 to fewer than 100 animals in 1988. In the Bering Sea most sea lions incidentally caught were males, while in the Gulf of Alaska females were more frequently caught. Females may also have been dominant in the incidental catch of sea lions in the Aleutian Islands area, but age and sex composition data are limited. Incidental mortality of adult female sea lions by foreign trawl fisheries in these areas could have partially contributed to the reported declines in northern sea lion populations in Alaska during the 1970s, but it cannot alone account for the present decline in population size. (PDF file contains 64 pages.)
Resumo:
A concept for joint research on aquaculture in the Baltic Sea area is presented. It consists of three major parts, the promotion of an aquaculture-based-fisheries, the development of low-output land-based aquaculture systems, and the search for sustainably produced substances from aquatic organisms to be used for different processes. They include substitutes for feeding stuffs or products of importance for medical, biotechnological and industrial applications.
Resumo:
According to the Millennium Ecosystem Assessment’s chapter “Coastal Systems” (Agardy and Alder 2005), 40% of the world population falls within 100 km of the coast. Agardy and Alder report that population densities in coastal regions are three times those of inland regions and demographic forecasts suggest a continued rise in coastal populations. These high population levels can be partially traced to the abundance of ecosystem services provided in the coastal zone. While populations benefit from an abundance of services, population pressure also degrades existing services and leads to increased susceptibility of property and human life to natural hazards. In the face of these challenges, environmental administrators on the coast must pursue agendas which reflect the difficult balance between private and public interests. These decisions include maintaining economic prosperity and personal freedoms, protecting or enhancing the existing flow of ecosystem services to society, and mitigating potential losses from natural hazards. (PDF contains 5 pages)
Resumo:
The overall goal of the joint research project is to relate the chemical reactions involved in the formation of organo-aluminium complexes under acid conditions to their toxic effects on the physiology of aquatic organisms. Finally, this research is intended to predict toxic effects arising from acidity and aluminium under varying environmental conditions. This interim report examines the chemical modelling of ion-binding by humic substances where a computer model has been developed and is being tested using field data, and conditions required for the precipitation of aluminium in surface waters.
Resumo:
As one part of an on-going programme concerned with environmental protection as provided for under the terms of a UK/USSR Joint Environmental Protection Agreement signed in London, 21 May 1974, a seminar — ”The elaboration of the scientific basis for monitoring the quality of surface water by hydrobiological indices” was held at Valdai in Russia 12—14 July, 1976. As a continuation of this theme it was agreed that delegations of hydrobiologists from each side should carry out reciprocal visits to carry out comparative field tests on selected systems of biological surveillance in use in the respective countries. In May 1978 a team of British hydrobiologists visited the USSR, under the auspices of the Department of Environment, to carry out joint exercises on the River Dnieper and some tributaries. This paper reports the results of selected methods used by the British side when applied to the conditions found in the River Dnieper.
Resumo:
In accordance with the plan for joint Anglo-Soviet scientific and technical collaboration on environmental problems, the comparative evaluation of systems of hydrobiological analysis of the surface water quality started in 1977 at the Regional Laboratory of the Severn-Trent Water Authority in Nottingham were continued in the spring of 1978. The investigations were carried out under the auspices of the Institute of Hydrobiology of the Academy of Sciences of the Ukrainian SSR. Hydrobiological and hydrochemical samples were collected by Soviet and British specialists from the Kiev reservoir and the rivers Dnieper, Sozh, Desna and Snov. The samples were processed on the expedition ships and in the Laboratory for the Hydrobiology of Small Water Bodies of the Institute of Hydrobiology of the Academy of Sciences of the Ukrainian SSR. The possible approved methods to be adopted were evaluated from the samples using the phytoperiphyton, phytoplankton, zooplankton and zoobenthos against a background of hydrochemical characteristics. The study concludes that weather conditions complicated the work on testing the systems of biological indication of water quality and made it inadvisable to use those methods of comparison which were used when similar work was carried out in Nottingham.
Resumo:
Common property regimes are forms of resource management grounded in a set of individually accepted rights and rules for the sustainable and independent use of collective goods. Details about this resource management systems are presented in this article.
Resumo:
The Community-based Coastal Resource Management Project in Orion, Bataan, Philippines was started in 1991. The village level fishers organizations have formed a municipal-wide association called the Samahan at Ugnayan ng Pangisdaan sa Orion (SUGPO). It represents 70% of the small-scale fishers in Orion and has taken on the task of rehabilitating the degraded fishing grounds. The experience in Orion indicates that coastal resource management can be successful if the fishers have ownership of the program and the costs and benefits of the program are distributed equally in a manner acceptable to them.
Resumo:
Long-term living resource monitoring programs are commonly conducted globally to evaluate trends and impacts of environmental change and management actions. For example, the Woods Hole bottom trawl survey has been conducted since 1963 providing critical information on the biology and distribution of finfish and shellfish in the North Atlantic (Despres-Patango et al. 1988). Similarly in the Chesapeake Bay, the Maryland Department of Natural Resources (MDNR) Summer Blue Crab Trawl survey has been conducted continuously since 1977 providing management-relevant information on the abundance of this important commercial and recreational species. A key component of monitoring program design is standardization of methods over time to allow for a continuous, unbiased data set. However, complete standardization is not always possible where multiple vessels, captains, and crews are required to cover large geographic areas (Tyson et al. 2006). Of equal issue is technological advancement of gear which serves to increase capture efficiency or ease of use. Thus, to maintain consistency and facilitate interpretation of reported data in long-term datasets, it is imperative to understand and quantify the impacts of changes in gear and vessels on catch per unit of effort (CPUE). While vessel changes are inevitable due to ageing fleets and other factors, gear changes often reflect a decision to exploit technological advances. A prime example of this is the otter trawl, a common tool for fisheries monitoring and research worldwide. Historically, trawl nets were constructed of natural materials such as cotton and linen. However modern net construction consists of synthetic materials such as polyamide, polyester, polyethylene, and polypropylene (Nielson et. al. 1983). Over the past several decades, polyamide materials which will be referred to as nylon, has been a standard material used in otter trawl construction. These trawls are typically dipped into a latex coating for increased abrasion resistance, a process that is referred to as “green dipped.” More recently, polyethylene netting has become popular among living resource monitoring agencies. Polyethylene netting, commonly known as sapphire netting, consists of braided filaments that form a very durable material more resistant to abrasion than nylon. Additionally, sapphire netting allows for stronger knot strength during construction of the net further increasing the net’s durability and longevity. Also, sapphire absorbs less water with a specific gravity near 0.91 allowing the material to float as compared to nylon with specific gravity of 1.14 (Nielson et. al. 1983). This same property results in a light weight net which is more efficient in deployment, retrieval and fishing of the net, particularly when towing from small vessels. While there are many advantages to the sapphire netting, no comparative efficiency data is available for these two trawl net types. Traditional nylon netting has been used consistently for decades by the MDDNR to generate long term living resource data sets of great value. However, there is much interest in switching to the advanced materials. In addition, recent collaborative efforts between MDNR and NOAA’s Cooperative Oxford Laboratory (NOAA-COL) require using different vessels for trawling in support of joint projects. In order to continue collaborative programs, or change to more innovative netting materials, the influence of these changes must be demonstrated to be negligible or correction factors determined. Thus, the objective of this study was to examine the influence of trawl net type, vessel type, and their interaction on capture efficiency.
Resumo:
If you own property on one of North Carolina’s estuaries, you can use this guide as a tool to learn about the choices you have to control your shoreline erosion and help decide which approach may be right for you. In North Carolina, we make a distinction between waterfront property that is located on the estuary, referred to as estuarine, shoreline, soundfront or riverside property, and waterfront property located directly on the ocean, referred to as oceanfront. Why? State laws and regulations addressing estuarine and oceanfront property, and the available erosion control methods, are quite different. This guide focuses on estuarine property. We’ll introduce you to the six main erosion control options in use in North Carolina and give you information about the out-of-pocket costs and tangible benefits of each option. We’ll also give you information about “hidden” costs and benefits that you may want to factor into your decision-making. You are fortunate to have a piece of estuarine shoreline to call your own, whether it’s your year-round residence or a weekend getaway. And if you’ve noticed some shoreline erosion lately, you’re probably a little concerned. But there are ready solutions.