10 resultados para inbreeding
em Aquatic Commons
Resumo:
Following a survey of the important traits of Indian carp broodstock at some southern Indian hatcheries, it was found that the broodstock selection was size selective, exerting strong, negative selection of prematuration growth rate and positive selection on age at first maturation. This meant that the hatchery bred inadvertently slower growing and later maturing individuals. Details are given of approaches to avoid such negative selection and minimize inbreeding.
Resumo:
The freshwater river systems and floodplains of Bangladesh are the breeding grounds for 13 endemic species of carps and barbs and a large number of other fish species, including a number of exotic carps and other species that have been introduced for aquaculture. Since 1967, breeding of endemic and exotic aquaculture species for seed producton through hypophysation techniques has become a common practice. The paper describes the present status of broodstock management, identifies problems, and suggests some guidelines to control negative selection and inbreeding in hatchery stocks in Bangladesh.
Cumulative inbreeding rate in hatchery-reared indian major carps of Karnataka and Maharashtra states
Resumo:
The state fisheries department hatcheries are the major suppliers of seed to the farmers in Karnataka and Maharashtra. The brood stocks of these hatcheries are genetically closed units. In the present study, effective population size and cumulative inbreeding rates were estimated. The cumulative inbreeding rates ranged from 2.69 to 13.75, 8.63 to 15.21 and 3.02 to 5.88 per cent for catla, mrigal and rohu, respectively, in Karnataka state hatcheries. In Maharashtra, the cumulative inbreeding rates for catla ranged from 7.81 to 39.34 per cent and it was 5.84 to 14.09 and 2.46 to 10.20 per cent for mrigal and rohu, respectively. To estimate the inbreeding rates in future generations, predictive models were developed using linear regression, and polynomial and power equations separately for each hatchery. Their multiple correlation and standard errors suggested that simple linear regression can predict the future inbreeding rate efficiently.
Resumo:
The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.
Resumo:
Common carp is one of the most important cultured freshwater fish species in the world. Its production in freshwater areas is the second largest in Europe after rainbow trout. Common carp production in Europe was 146,845 t in 2004 (FAO Fishstat Plus 2006). Common carp production is concentrated mainly in Central and Eastern Europe. In Hungary, common carp has been traditionally cultured in earthen ponds since the late 19th century, following the sharp drop in catches from natural waters, due to the regulation of main river systems. Different production technologies and unintentional selection methods resulted in a wide variety of this species. Just before the intensification of rearing technology and the exchange of stocking materials among fish farms (early sixties), “landraces” of carp were collected from practically all Hungarian fish farms into a live gene bank at the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) at Szarvas (Bakos and Gorda 1995; Bakos and Gorda 2001). In order to provide highly productive hybrids for production purposes starting from 1964, different strains and crosses between Hungarian landraces were created and tested. During the last 40 years, approximately 150 two-, three-, and four-line hybrids were produced. While developing parental lines, methods of individual selection, inbreeding, backcrossing of lines, gynogenesis and sex reversal were used. This breeding program resulted in three outstanding hybrids: “Szarvas 215 mirror” and “Szarvas P31 scaly” for pond production, and “Szarvas P34 scaly” for angling waters. Besides satisfying the needs of industry, the live gene bank helped to conserve the biological diversity of Hungarian carp landraces. Fifteen Hungarian carp landraces are still maintained today in the gene bank. Through exchange programs fifteen foreign carp strains were added to the collection from Central and Eastern Europe, as well as Southeast Asia (Bakos and Gorda 2001). Besides developing the methodology to maintain live specimens in the gene bank, the National Carp Breeding Program has been initiated in cooperation with all the key stakeholders in Hungary, namely the National Association of Fish Producers (HOSZ), the National Institute for Agricultural Quality Control (OMMI), and the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI). In addition, methodologies or technologies for broodstock management and carp performance testing have been developed. This National Carp Breeding Program is being implemented successfully since the mid-1990s.
Resumo:
Selection experiments with the herbivorous blunt snout bream or Wuchang bream (Megalobrama amblycephala) were started in 1985. Mass selection for size and length/depth ratio resulted in a significant increase in growth and better shape, while inbreeding led to a significant decrease in growth. The total selection ratio from fry to mature brooders was about 0.03 per cent per generation. In the grow out stage, the average daily body weight gains of two lines of fifth generation (F5) fish were 29 per cent and 20 per cent respectively more than the control group, with an average of 5.8 per cent and 4 per cent improvements per generation, respectively. The body was 4 per cent deeper in ratio of standard length/body depth. The effects of inbreeding were examined by crossing full-sibs, the offspring of which were kept without selection. The third generation inbred fish showed 17 per cent lower growth as compared to the control group, with an average of 7.5 per cent per generation. The results demonstrate that selection is a powerful tool to improve the economic traits of the blunt snout bream, but inbreeding can rapidly lead to a reduction in performance. In 2000, the 6th generation of selected bream was certified by the Chinese Ministry of Agriculture as a good breed for aquaculture.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
The study was conducted with the broad objectives to assess the existing situation of broodstock management and fish seed production in private fish seed farms in Bangladesh. The data were collected from 100 private hatcheries and 40 nurseries in seven upazilas under four districts. There was no shed in forty hatcheries and the owners faced many problems. Brood fish ponds were found suitable for rearing brood fish. About 66% of the hatchery owners collected brood fish from their own ponds and ponds of neighboring areas. Activities like pond preparation; manuring and supplementary feeding were done properly but stocking density of brood fish in 76% of the hatcheries was 3,000-7,000 kg/ha. Infection of argulosis was found in brood fish of 87% of the hatcheries. About 67% of the hatchery owners practiced inter-species crossing. Major problems faced by the hatchery owners were argulosis of brood fish, unavailability of pure brood stock, inadequate brood fish pond. The hatchery owners were found interested to find out the preventive measures of argulosis, develop pure brood stock of indigenous carp and import pure strain of exotic carp. According to the nursery operators, they cultivated hybrid fry because of high demand, rapid growth and good taste. Problems of using hatchery spawn as mentioned by the nursery operators were inbreeding, under sized and aged brood stock, stunted growth, physical deformities and high mortality of spawn due to unknown causes.
Resumo:
This study mainly evaluated the profitability of Fish Seed Multiplication Farms (FSMFs) having hatchery, nursery and hatchery-cum-nursery located in the districts of Jessore, Jhenidah and Narail in Bangladesh. The general findings of the study were that the investment in FSMFs with hatchery, nursery and hatchery-cum-nursery was highly profitable business. The results clearly indicated that the investment on hatchery was the most profitable than those of nursery and hatchery-cum-nursery operations from the viewpoints of individual investors. The results of sensitivity analysis suggested that the investment in nursery farm was a risky business with 20 per cent increase in operation and management as well was production costs or 20 per cent reduction in benefits if other things remaining the same. It was also evident from the study that the investors of FSMFs had currently been facing some crucial problems, which among others are: problems of inbreeding, shortage of brood fish, incidence of diseases, unavailability of certain inputs and lack of credit.
Resumo:
Natural populations of fish species in Lake Victoria Region (LVR) have under gone dramatic changes including severe reduction in sizes, division of original stocks into disjunct subunits, and segregation into several isolated population units either within a single water body or even worse into separate waters. In addition, these changes have been either preceded or precipitated by introductions of non-indigenous species that out competed the native forms and in case of closely related species genetically swamped them through hybridisation. The latter is especially the case in Nabugabo lakes. Such events lead to fragmentation of populations, which results in reduction in genetic diversity due to genetic drift, inbreeding and reduced or lack of gene flow among independent units. Such phenomena make the continued existence of fisheries stocks in the wild precarious, more so in the face of the competition from exotic species. Species introductions coupled with growing exploitation pressure of the fisheries of these lakes have put the native stocks at risk. Nabugabo lakes harbor cichlid species that are unique to these lakes more so species of the cichlid complex. In this paper the ecological status and genetic viability of key Nabugabo lakes fish species is examined and management options are discussed.