8 resultados para in situ SECM hydrogen permeation
em Aquatic Commons
Resumo:
Foreword 1. BACKGROUND AND OBJECTIVES (pdf, 0.1 Mb) 2. 2004 WORKSHOP SUMMARY (pdf, < 0.1 Mb) 2.1. What have we learned from the enrichment experiments? 2.2 What are the outstanding questions? 2.3 Recommendations for SEEDS-II 3. EXTENDED ABSTRACTS OF THE 2004 WORKSHOP 3.1 Synthesis of the Iron Enrichment Experiments: SEEDS and SERIES (pdf, 0.5 Mb) Iron fertilization experiment in the western subarctic Pacific (SEEDS) by Atsushi Tsuda The response of N and Si to iron enrichment in the Northeast Pacific Ocean: Results from SERIES by David Timothy, C.S. Wong, Yukihiro Nojiri, Frank A. Whitney, W. Keith Johnson and Janet Barwell-Clarke 3.2 Biological and Physiological Responses (pdf, 0.2 Mb) Zooplankton responses during SEEDS by Hiroaki Saito Phytoplankton community response to iron and temperature gradient in the NW and NE subarctic Pacific Ocean by Isao Kudo, Yoshifumi Noiri, Jun Nishioka, Hiroshi Kiyosawa and Atsushi Tsuda SERIES: Copepod grazing on diatoms by Frank A. Whitney, Moira Galbraith, Janet Barwell-Clarke and Akash Sastri The Southern Ocean Iron Enrichment Experiment: The nitrogen uptake response by William P. Cochlan and Raphael M. Kudela 3.3 Biogeochemical Responses (pdf, 0.5 Mb) What have we learned regarding iron biogeochemistry from iron enrichment experiments? by Jun Nishioka, Shigenobu Takeda and W. Keith Johnson Iron dynamics and temporal changes of iron speciation in SERIES by W. Keith Johnson, C.S. Wong, Nes Sutherland and Jun Nishioka Dissolved organic matter dynamics during SEEDS and SERIES experiments by Takeshi Yoshimura and Hiroshi Ogawa Formation of transparent exopolymer particles during the in-situ iron enrichment experiment in the western subarctic Pacific (SEEDS) by Shigenobu Takeda, Neelam Ramaiah, Ken Furuya and Takeshi Yoshimura Atmospheric measurement by Mitsuo Uematsu 3.4 Prediction from Models (pdf, 0.3 Mb) Modelling iron limitation in the North Pacific by Kenneth L. Denman and M. Angelica Peña A proposed model of the SERIES iron fertilization patch by Debby Ianson, Christoph Voelker and Kenneth L. Denman 4. LIST OF PARTICIPANTS FOR THE 2004 WORKSHOP (pdf, < 0.1 Mb) APPENDIX 1 Report of the 2000 Planning Workshop on Designing the Iron Fertilization Experiment in the Subarctic Pacific (pdf, 1 Mb) APPENDIX 2 Terms of Reference for the Advisory Panel on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 3 Historical List of Advisory Panel Members on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 4 IFEP-AP Annual Reports (pdf, 0.1 Mb) APPENDIX 5 PICES Press Articles (pdf, 0.6 Mb) (194 page document)
Resumo:
This Alliance for Coastal Technologies (ACT) workshop was convened to assess the availability and state of development of conductivity-temperature sensors that can meet the needs of coastal monitoring and management communities. Rased on the discussion, there are presently a number of commercial sensor options available, with a wide range of package configurations suitable for deployment in a range of coastal environments. However, some of the central questions posed in the workshop planning documents were left somewhat unresolved. The workshop description emphasized coastal management requirements and, in particular, whether less expensive, easily deployed, lower-resolution instruments might serve many management needs. While several participants expressed interest in this class of conductivity-temperature sensors, based on input from the manufacturers, it is not clear that simply relaxing the present level of resolution of existing instruments will result in instruments of significantly lower unit cost. Conductivity-temperature sensors are available near or under the $1,000 unit cost that was operationally defined at the workshop as a breakpoint for what might be considered to be a "low cost" sensor. For the manufacturers, a key consideration before undertaking the effort to develop lower cost sensors is whether there will be a significant market. In terms of defining "low cost," it was also emphasized that the "life cycle costs" for a given instrument must be considered (e.g., including personnel costs for deployment and maintenance). An adequate market survey to demonstrate likely applications and a viable market for lower cost sensors is needed. Another topic for the workshop was the introduction to the proposed ACT verification for conductivity-temperature sensors. Following a summary of the process as envisioned by ACT, initial feedback was solicited. Protocol development will be pursued further in a workshop involving ACT personnel and conductivity-temperature sensor manufacturers.[PDF contains 28 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT. An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters. In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop. This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]
Resumo:
The Alliance for Coastal Technology (ACT) convened a workshop on the in situ measurement of dissolved inorganic carbon species in natural waters in Honolulu, Hawaii, on February 16, 17, and 18, 2005. The workshop was designed to summarize existing technologies for measuring the abundance and speciation of dissolved inorganic carbon and to make strategic recommendations for future development and application of these technologies to coastal research and management. The workshop was not focused on any specific technology, however, most of the attention of the workshop was on in situ pC02 sensors given their recent development and use on moorings for the measurement of global carbon fluxes. In addition, the problems and limitations arising from the long-term deployment of systems designed for the measurement of pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) were discussed. Participants included researchers involved in carbon biogeochemistry, industry representatives, and coastal resource managers. The primary questions asked during the workshop were: I. What are the major impediments to transform presently used shipboard pC02 measurement systems for use on cost-eficient moorings? 2. What are the major technical hurdles for the in situ measurement of TA and DIC? 3. What specific information do we need to coordinate efforts for proof of concept' testing of existing and new technologies, inter-calibration of those technologies, better software development, and more precise knowledge quantzjjing the geochemistry of dissolved inoeanic carbon species in order to develop an observing system for dissolved inorganic carbon? Based on the discussion resulting from these three questions, the following statements were made: Statement No. 1 Cost-effective, self-contained technologies for making long-term, accurate measurements of the partial pressure of C02 gas in water already exist and at present are ready for deployment on moorings in coastal observing systems. Statement No. 2 Cost-effective, self-contained systems for the measurement of pH, TA, and DIC are still needed to both fully define the carbonate chemistry of coastal waters and the fluxes of carbon between major biogeochemical compartments (e.g., air-sea, shelf-slope, water column-sediment, etc.). (pdf contains 23 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Applications of in situ Fluorometers in Nearshore Waters" was held in Cape Elizabeth, Maine, February 2-4,2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), one of the ACT partner organization. The purpose of the workshop was to explore recent trends in fluorometry as it relates to resource management applications in nearshore environments. Participants included representatives from state and federal environmental management agencies as well as research institutions, many of whom are currently using this technology in their research and management applications. Manufacturers and developers of fluorometric measuring systems also attended the meeting. The Workshop attendees discussed the historical and present uses of fluorometry technology and identified the great potential for its use by coastal managers to fulfill their regulatory and management objectives. Participants also identified some of the challenges associated with the correct use of Fluorometers to estimate biomass and the rate of primary productivity. The Workshop concluded that in order to expand the existing use of fluorometers in both academic and resource management disciplines, several issues concerning data collection, instrument calibration, and data interpretation needed to be addressed. Participants identified twelve recommendations, the top five of which are listed below: Recommendations 1) Develop a "Guide" that describes the most important aspects of fluorescence measurements. This guide should be written by an expert party, with both research and industry input, and should be distributed by all manufacturers with their instrumentation. The guide should also be made available on the ACT website as well as those of other relevant organizations. The guide should include discussions on the following topics: The benefits of using fluorometers in research and resource management applications; What fluorometers can and cannot provide in terms of measurements; The necessary assumptions required before applying fluorometry; Characterization and calibration of fluorometers; (pdf contains 32 pages)
Resumo:
The rhythm of division of 9 species belonging to different groups of algae were analysed in situ and in the laboratory. The research which developed in different environmental conditions attempted to establish the capacity for multiplication and assimilation of chlorophyll on the part of the algae under study with a view to placing them in a culture. The results obtained showed that the green multicellular algae (eg. Ulothrix) and the blue algae (eg. Lyngbya, Oscillatoria) are able to produce an appreciable quantity of dry matter, just as the unicellular algae. At the same time it arises that amongst the numerous factors of the environment, temperature plays one of the most important roles in the process of multiplication.
Resumo:
Plankton and larval fish sampling programs often are limited by a balance between sampling frequency (for precision) and costs. Advancements in sampling techniques hold the potential to add considerable efficiency and, therefore, add sampling frequency to improve precision. We compare a newly developed plankton imaging system, In Situ Ichthyoplankton Imaging System (ISIIS), with a bongo sampler, which is a traditional plankton sampling gear developed in the 1960s. Comparative sampling was conducted along 2 transects ~30–40 km long. Over 2 days, we completed 36 ISIIS tow-yo undulations and 11 bongo oblique tows, each from the surface to within 10 m of the seafloor. Overall, the 2 gears detected comparable numbers of larval fishes, representing similar taxonomic compositions, although larvae captured with the bongo were capable of being identified to lower taxonomic levels, especially larvae in the small (<5 mm), preflexion stages. Size distributions of the sampled larval fishes differed considerably between these 2 sampling methods, with the size range and mean size of larval fishes larger with ISIIS than with the bongo sampler. The high frequency and fine spatial scale of ISIIS allow it to add considerable sampling precision (i.e., more vertical sections) to plankton surveys. Improvements in the ISIIS technology (including greater depth of field and image resolution) should also increase taxonomic resolution and decrease processing time. When coupled with appropriate net sampling (for the purpose of collecting and verifying the identification of biological samples), the use of ISIIS could improve overall survey design and simultaneously provide detailed, process-oriented information for fisheries scientists and oceanographers.
Resumo:
Development of a portable self-contained electronic meter for on the spot determination of temperature and salinity is described. Instant and remote measurements of temperature and salinity of sea and estuarine waters in the range of 25-30°C and 30-35°C for temperature with an accuracy ± 0.05°C and 0-37‰ and 31-37‰ for salinity with an accuracy of ± 0.2‰ and ± 0.05‰ respectively are possible with the instrument. The temperature compensations of the salinity measurements are done manually with the help of temperature charts. The temperature and salinity measurements can be fed to continuous recorders.