23 resultados para heavy metal deposition
em Aquatic Commons
Resumo:
The research was carried out to assess the trace metal concentration in sediments of ship breaking area in Bangladesh. The study areas were separated into Ship breaking Zone and Reference Site for comparative analysis. Metals like Iron ( Fe) was found at 11932 to 41361.71µg.g-1 in the affected site and 3393.37 µg.g-1 in the control site. Manganese (Mn) varied from 2.32 to 8.25 µg.g-1 in the affected site where as it was recorded as 1.8 µg.g-1 in the control area. Chromium(Cr), Nickel (Ni), Zinc(Zn) and Lead (Pb) were also varied from 22.89 to 86.72 µg.g-1; 23.12 to 48.6;83.78 to 142.85 and 36.78 to 147.83 µg.g-1 respectively in the affected site whereas these were recorded as 19; 3.98; 22.22 and 8.82 µg.g-1 in the control site. Copper (Cu); Cadmium (Cd) and Mercury (Hg) concentration were varied from 21.05 to 39.85; 0.57 to 0.94 and 0.05 to 0.11 µg.g-1 in the affected site and 33.0; 0.115 and 0.01 µg.g-1 in the control site. It may conclude that heavy metal pollution in sediments at ship breaking area of Bangladesh is at alarming stage.
Resumo:
Data obtained from investigations which had been carried out during 1998-1999 in the waters of South Vietnam indicate that concentrations of Fe and Zn were usually higher than permissible limits. In the East South Vietnam waters, Fe concentration varied from 77 to 4450g/l (mean 1045g/l) and Zn concentration varied from 7.24 to 74.1g/l (mean 26.7g/l), Pollution coefficients of the two metals were 10.4 and 2.7 respectively. In the Gulf of Thailand, variation range of Fe was 133-850g/l (mean 318g/l) and of Zn was 4.8-167.8g/l (mean 23.46g/l); corresponding pollution coefficients were 3.2 and 2.3. Mn, Cu, As had mean concentrations lower than permissible limits. In the East South Vietnam waters, variation range for Mn was 9.0-444.6g/l (mean 57.0g/l), for Cu was 1.0- 20.3g/l (mean 3.1g/l) and for As was 1.0-10.5 g/l (mean 3.7 g/l). In the Gulf of Thailand, Mn concentration varied from 1.2 to 410.5g/l (mean 19.1g/l), Cu concentration varied from 1.2 to 14.7g/l (mean 3.7g/l), variation range of As concentration was 1.0-13.3g/l with the mean value was 3.6g/l. Scarce data relating to Hg, Cd, Pb showed that their concentrations in the East South Vietnam waters were negligible (usually < 1.0g/l).
Resumo:
The contents of the heavy metals Fe, Zn, Cu, Mn, Pb, Cd and As were examined in the liver, heart, gills, kidney and muscles of the fish Clarias gariepinus from Eko-Ende dam in Ikirun, the capital of Ifelodun Local Government of Osun State, Nigeria. C. gariepinus is the fish of choice and the most demanded in the southwest of Nigeria. The highest metal concentrations were in the liver and the gills while the lowest was in the muscles. The general deceasing order of metal accumulation in the organs was Fe > Zn > Cu > Mn > Cd. Lead and arsenic were not detected in any organ. The values were of lower concentrations than found in many other dams and rivers in Nigeria and some other countries. The values were also lower than the FAO/WHO recommended maximum limits in fish samples, making the fish to be safe and not of any hazards for the consumers.
Resumo:
Biological studies and heavy metal (Ni, v, Fe, Pb,Cd) determination in liver, gonad and muscle of Scomberomorus commerson were carried out from Oct 2006 to Sept 2007 in Hormozgan coastal waters. 599 Samples were gutted for reproduction and nutrition studies, fork length and weight were measured to nearest cm and g respectively. Meanwhile 40 samples were also investigated for heavy metal studies. All specimens were collected from two major landing sites (Bandar Lengeh & Bandar Abbas). Minimums & maximum fork length & weight were 29, 128 cm & 235 and 15350 g respectively.Isometric growth was shown according to our study and b was estimated 2.9 (overall), 2.91(male) & 2.89 (female). The average relative gut length was 0.52± 0.007 and it was determined that S. commerson is a carnivorous. More than 99 percent of gut content was different teleost fishes. Gastro somatic index had two peaks in Nov & Jan (before spawning) and with a decreased trend in July, the spawning period. Occurrence of empty stomach was estimated % 65.77. Maximum amount of condition factor was in Dec. Spawning season was started from June. The average of Absolute & relative fecundity (to weight unit) was 1217149±179315 and 178.2±15.58 respectively. Lm50% was estimated 75 cm for females. Sex ratio was 0.97: 1 (male: female). Chi- Square test showed no significant difference (p>0.05). Maximum amount of hepatosomatic index was estimated in March.Metal concentrations were determined using either Flame Atomic Absorption Spectroscopy (for Fe) or Graphite Furnace Atomic Absorption Spectroscopy (for Pb,Cd,Ni and V). The mean concentration (μg/g dry weight)of Pb,Cd,Ni,V and Fe in the liver were 0.0309, 0.0268, 0.0672, 0.0077, 2.5159 in the gonad 0.0440 ,0.0295, 0.1096, 0.0000, 1.4449 and in the muscle 0.0244, 0.0324, 0.0656, 0.0128, 1.6138 respectively. The maximum metal concentrations were below the maximum permissible limits for human consumption recommended by the USEPA, WHO and the UK. The results of Kendall's Tau-b correlation coefficient were as follows: The Liver tissue: There were significant positive linear relationships between accumulation of V, Fe, and Pb with Fork length, Pb and Fe with weight, GSI with Pb, Cd, V and 109 Fe, and a negative linear relationships between HSI with accumulation of V and Fe, Fork length, weight and GSI. The Gonad tissue: There were significant positive linear relationships between GSI with accumulation of Pb, Cd, Fe, Fork length and weight, a negative linear relationship between HSI with Fork length, weight and GSI. The Muscle tissue: There were significant positive linear relationships between accumulations of V, Fe with Fork length and weight factors and as well as GSI with Cd, V, Fe, Pb, Fork length and weight,a negative linear relationship between HSI with Fork length, weight, Cd, Fe and GSI. The results of Mann-Whitney U tests (P≤0.05) show that there were significant differences between summer and autumn from heavy metal contents in the studied tissues point of view. The only exceptions were for Ni in the liver, gonads and muscle and as well as there were significant differences between male and female from heavy metal contents in the studied tissues. The only exceptions were for Pb in muscle, Ni in liver, gonad and muscle, V in muscle, and Cd and Fe in gonads.
Resumo:
Marine mammals accumulate heavy metals in their tissues at different concentrations according to trophic levels and environmental conditions. The franciscana (Pontoporia blainvillei) is a small coastal species inhabiting the marine and estuarine areas of the Southwestern Atlantic Ocean. Its diet includes numerous species of small fish, squid and crustaceans. The aims of this study were to (i) assess the heavy metal concentration and burden distribution in different franciscana age classes and sex, and to (ii) evaluate both the accumulation processes and the transplacental transference of zinc, cadmium, copper and total mercury. Heavy metal concentrations (wet weight) were determined in eighteen dolphins by Atomic Absorption Spectrophotometry (AAS), by the cold vapour technique (mercury) or with air/acetylene flame (cadmium, zinc and copper). Liver showed the highest concentrations of mercury (max. 8.8 mg/g), zinc (max. 29.7 mg/g) and copper (max. 19.0 mg/g), whereas the highest cadmium concentrations (max. 6.7 mg/g) were found in kidney. Adults contained the highest concentrations for all heavy metals, followed by juveniles and calves in decreasing order, suggesting an age-related accumulation. No differences (p<0.05) were found between sexes within each age class. Organ burden distribution followed the same pattern for all metals and age classes: liver tissues contained maximum burdens. Mercury concentrations were higher than those of cadmium in both foetuses and newborns; and neither metal could be detected in the foetus. The analysed data suggested differences in the placental transference between metals, being significant for mercury and almost null in the case of cadmium. We can conclude that franciscana accumulates heavy metals and, due to its coastal distribution, it may be considered as a biomonitor of its environment. SPANISH: Los mamíferos marinos acumulan metales pesados en sus tejidos cuyas concentraciones están en relación con su nivel trófico y las condiciones ambientales. La franciscana (Pontoporia blainvillei) es una especie costera que habita áreas marinas y estuariales en el Atlántico Sudoccidental. Su dieta está constituída por peces, como item alimentario principal, calamares y crustáceos. El objetivo del presente trabajo es estudiar la distribución de metales pesados en diferentes clases de edad y en ambos sexos, evaluando procesos de acumulación y cargas de cadmio, mercurio total, cinc y cobre. Las concentraciones de metales pesados (en peso húmedo) fueron determinadas en dieciocho delfines por Espectrofotometría de Absorción Atómica (EAA), usando la técnica de vapor frío (mercurio) o llama de aire/acetileno (cadmio, cinc y cobre). El hígado presentó las concentraciones más altas de mercurio (máx. 8,8 mg/g), cinc (máx. 29,7 mg/g) y cobre (máx. 19,0 mg/g), mientras que las más altas de cadmio (máx. 6,7 mg/g) fueron encontradas en el riñón. Los adultos presentaron los niveles más altos, presentando los juveniles y cachorros concentraciones menores, lo cual sugirió una acumulación con la edad. No se encontraron diferencias significativas (p < 0,05) entre sexos dentro de cada clase de edad. Las cargas de metales pesados en los órganos presentaron la misma disribución para todos los metales y clases de edad. Los valores más altos fueron encontrados en el hígado, incluyendo los correspondientes a cadmio. Las concentraciones de mercurio y cadmio fueron no detectables en el feto, mientras que las de mercurio fueron superiores a las de cadmio en los cachorros. Los datos encontrados en el feto sugieren una transferencia nula a través de la placenta. Podemos concluir que P.blainvillei acumula metales pesados en sus tejidos y debido a su distribución costera, esta especie puede ser considerada como un biomonitor de su ambiente.
Resumo:
This is the history of contamination in sediments from the Mersey Estuary: Development of a chronology for the contamination of the Mersey Estuary by heavy metals and organochlorines Report produced by the Environment Agency in 1998. This report looks at the history of industrial contamination of the Mersey and Ribble Estuaries back to the early part of the last century, many decades before the start of monitoring programmes providing a remarkably detailed picture of very complex changes. There is a clear record in the sediment of the contamination by each heavy metal (including: Cu, Cr, Hg, Pb, Zn) and organochlorine chemical (including DDT isomers and PCB congeners) studied. The results of the study clearly show the increases in levels of contamination as industry expanded early last century followed by various improvements as this century progressed. Each pollutant has its own idiosyncratic pattern of change with some improvements predating modern environmental concerns whilst other changes seem to relate directly to recent improvements in legislative control. Overall, for the pollutants studied, the results clearly demonstrate the magnitude of improvement that has been achieved in what was a very polluted area. The only major reservation to this story is that despite the wide range of substances covered, many other potentially important pollutants remain to be studied in a similar manner.
Resumo:
A study to measure the heavy metal pollution level in the sediment of coastal and offshore area indicates that high concentration of heavy metals were found around Manora channel and eastern coast of Karachi. In comparison with coastal areas, relatively low concentration of heavy metals was recorded in the offshore area. The result shows that sewage and industrial wastes are the main source of heavy metal pollution in the coastal area. The concentration of heavy metals in the sediments is as follows: Chromium 10.4-33.69, nickel 13.3-47.6, lead 10.0-39.04, cadmium 0.08-0.21, zinc 7.4-73.2 and copper 9.44-18.56 mg/kg. In the offshore areas strong correlation was observed between copper and organic carbon, and calcium carbonate and cadmium. In the shore area such correlation has been recorded among nickel, chromium, zinc, and chromium and copper. The Karachi. coast is viewed as moderately polluted when compared to other continental coastal areas.
Resumo:
Biochemical ecotoxicology and biomarkers using are a new sciences that are used for biomonitoring in aquatic environment. Biomonitoring plays a vital role in strategies to identify, assess, and control contaminants. On the other hands in recent year's attention to polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals increased in aquatic environments because of their carcinogenic and mutagenic properties combined with their nearly ubiquitous distribution in depositional environments by oil pollution or industrial waste waters. The present research aimed to assess PAHs and Ni, V levels in surface sediments and bivalves (Anodonta cygnea)and the effects of PAHs and heavy metals (Ni,V) on the hemocyte of the Anodonta cygnea were investigated in 2 stations (Mahrozeh, Selke in Anzali Lagoon, North of Iran). Samples were collected during at 2 different periods of the year, Dry and rain seasons, (June & September) and to confirm our first observations, Cage station is added. The bivalves hemocytes were monitored for membrane injury by NRR methods (neutral red retention assay). Heavy metal (Ni, V) concentrations were determined by Atomic Absorption in Anodonta cygnea and the sediments in Anzali Lagoon. The vanadium concentration in bivalves and sediments was ND(not detect )-0.4231 μg/g and 1.4381-306.9603 μg/g dry weight respectively. Nickel concentration in bivalves and sediments was 0.0231-1.3351, 0.4024-19.3561 μg/g dry weight respectively. PAHs concentrations were determined by GC-Mass in Anodonta cygnea and the sediments. Average concentration of PAHs is 115-373.788 ng/g dry weight in bivalves and average concentration of PAHs is 34.85-1339.839 ng/g dry weight in sediments. Bioaccumulation sediments factor(BASF) is high about PAHs (>1) and BASF is low for Ni, V (<1) . Internal Damage mechanisms of bivalves hemocytes (cell mortality, dye leakage, decreased membrane stability, are observed (Lowe Methods). Statistical analysis was used to explore the relationship between altered cellular and above contaminants. There are power and negative correlations between PAHs and NRR method for hemocytes in Anodonta cygnea (P<0.0005), but good correlation is not observed between Ni, V and NRR method for hemocytes in every time. This research indicates that the NRR assay is a useful screening technique able to discriminate polluted sites and at first we announce that Anodonta cygnea hemocytes are efficient biomarker for PAHs pollutants in fresh water.
Resumo:
The purpose of this study conducted from January 2007 to April 2008, by NaFIRRI, was to investigate specifically the status of heavy metal (copper, Cu; Zinc, Zn and Lead, Pb) concentrations in bottom sediments of Lake Albert and relate the information to the safety of Lake environment and its entire fisheries.
Resumo:
The general purpose of this study is to investigate the degree of heavy metal accumulation in hard and soft tissue of sea urchin, and determining these tissues as the most suitable bioindicator for lead and cadmium in the environment of the sampling stations. The way of doing this assessment was MOOPAM. Samples were prepared and classified according to sea urchin organ (soft tissue, hard tissue, Tube feet, Test, Lantern Structure and spines) and then lead and cadmium were measured in them. Result of this study shows that hard tissue is a better index of lead and cadmium than soft tissue. The result of bioaccumulation of lead in the related tissue was found to be in the following order: Soft tissue=21, hard tissue=28.1, Test=20.8, Lantern Structure=20.5 and spines=23.9. The result of bioaccumulation of cadmium in the related tissue was found to be in the following order: Soft tissue=9. 7, hard tissue=5.01, Test=4.2, Lantern Structure=4.06 and spines=5.53.
Resumo:
There are various tools for monitoring the concentration of pollutants on aquatic ecosystems. Today these studies are based on biological monitoring and biomarkers. The aim of this study was to measure the concentration of the acetylcholinesterase (AChE), glutathione S-transferase and catalase as biomarkers of heavy metal contamination in pearl oyster Pinctada radiata and their mechanism in aquatic ecosystems. Heavy metals lead, cadmium and nickel were measured in soft tissue and studied stations in four seasons. Samples were collected seasonally in Lavan stations, Hendurabi and Nakhilo (in the northern Persian Gulf) from spring 2013 to winter of that year by scuba diving. Pearl oysters are divided according to their shells size; shells separated from soft tissues and were transferred to the laboratory for analysis of heavy metals and enzymes. Moopam standard method for were used for measuring the concentration of heavy metals and for analyzing tissue concentrations of glutathione S-transferase in Clam the method recommended by Habig et al in 1974 were used. For measuring acetylcholinesterase Ellman method were used. Catalase contamination in pearl oyster in the supernatant obtained from the study based on the method homogeate soft tissue of mussels (Abei, 1974) was evaluated. The results showed that the concentration of lead has significant difference in sediments station, the concentration of lead in Lavan is significantly higher than the other two stations, This could be due to the movement of tanker, boats and floating refueling and with a considerable amount of wastewater containing oil and Petroleum into the water, and also due to precipitation and industrial discharges the lead in the region is increasing, land-disposed sewage sludge, has large concentrations of lead. Compare the results of this study with standards related and other similar studies at the regional and international level showed that pollutant concentration of heavy metals in all cases significantly less than all the standards and guide values associated. And also compared to other world research results have been far less than others, Being Less of the conclusion given in this research according that nickel is one of the indicators of oil pollution in the study area and emissions have been relatively low of oil. The concentration of acetylcholinesterase at several stations, in large and small sizes and in the seasons had no significant difference. Variations of catalase, and glutathione S-transferase were almost similar to each other and parameters, station and seasons were significantly different in the concentrations of these enzymes. The effects and interaction between various parameters indicate that following parameters has impact on the concentration of catalase and glutathione S-transferase. Stations; Seasonal changes in antioxidant enzymes related to (assuming a constant in salinity and oxygen) to age, reproductive cycle, availability of food and water temperature. With increasing temperature at warm season, antioxidant enzymes were increase, with increasing temperature and abundance of food in the environment the amount of antioxidant enzymes may increase. The presence of the enzyme concentration may indicate that the higher levels of the enzyme to eliminate ROS activities to be any healthier situation. At the time of gonads maturation and spawning season catalase activity increases. This study also indicates that catalase was significantly higher in the warm season. Due to low pollutants of heavy metals in the study area, a lower level of contaminants were observed in shellfish tissue incidents of international standards and strong correlation between the amount of heavy metal contamination in pearl oyster tissue and enzymes was not observed. Therefore, we can say that the pearl oyster remains in a healthy condition and the amount of enzyme is normal.
Resumo:
Widespread pollution by heavy metals generated by various industries has serious adverse effects on human health and the environment. Cadmium is a heavy metal recognised as one of the most hazardous environmental pollutants. It is a non-essential and non-beneficial element to organisms, causing toxicity and other deleterious effects on various components of the aquatic environment. The ability of algal periphyton to concentrate cadmium from fresh water is well known. Moreover, periphyton communities are able to accumulate large amounts of cadmium despite its low concentration in fresh water. Many researchers use algal periphyton as an indicator of water quality in aquatic environments. In the present study, the authors ask two basic questions: Does cadmium accumulate along a food chain consisting of the periphyton community and a grazer species (Physa sp.) under semi-natural conditions provided by artificial streams? If not, which one can better indicate the water quality?
Resumo:
A review of available information describing habitat associations for belugas, Delphinapterus leucas, in Cook Inlet was undertaken to complement population assessment surveys from 1993-2000. Available data for physical, biological, and anthropogenic factors in Cook Inlet are summarized followed by a provisional description of seasonal habitat associations. To summarize habitat preferences, the beluga summer distribution pattern was used to partition Cook Inlet into three regions. In general, belugas congregate in shallow, relatively warm, low-salinity water near major river outflows in upper Cook Inlet during summer (defined as their primary habitat), where prey availability is comparatively high and predator occurrence relatively low. In winter, belugas are seen in the central inlet, but sightings are fewer in number, and whales more dispersed compared to summer. Belugas are associated with a range of ice conditions in winter, from ice-free to 60% ice-covered water. Natural catastrophic events, such as fires, earthquakes, and volcanic eruptions, have had no reported effect on beluga habitat, although such events likely affect water quality and, potentially, prey availability. Similarly, although sewage effluent and discharges from industrial and military activities along Cook Inlet negatively affect water quality, analyses of organochlorines and heavy metal burdens indicate that Cook Inlet belugas are not assimilating contaminant loads greater than any other Alaska beluga stocks. Offshore oil and gas activities and vessel traffic are high in the central inlet compared with other Alaska waters, although belugas in Cook Inlet seem habituated to these anthropogenic factors. Anthropogenic factors that have the highest potential negative impacts on belugas include subsistence hunts (not discussed in this report), noise from transportation and offshore oil and gas extraction (ship transits and aircraft overflights), and water quality degradation (from urban runoff and sewage treatment facilities). Although significant impacts from anthropogenic factors other than hunting are not yet apparent, assessment of potential impacts from human activities, especially those that may effect prey availability, are needed.
Resumo:
Following a brief outline of the physiography of the Indian Ocean, an examination is made of the current situation regarding contamination of the environment. Prominent marine pollutants and the consequences of the marine disposal are discussed, considering in particular oil pollution, heavy metal pollution, agricultural wastes and domestic wastes. Research activities conducted in the area investigating the levels of marine pollution are detailed, and an evaluation made of future prospects concerning the monitoring and control of pollution.
Resumo:
This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution.