12 resultados para heat shock protein 90
em Aquatic Commons
Resumo:
The stress response, at the molecular level, of the soft corals Dendronephthya klunzingeri and Heteroxenia sp., hard corals Acropora hyacinthus and A. valenciennesi, an ascidian Symplegma sp. and sponges Latruncula cortica and Callyspongia crassa to germanium oxide (GeO sub(2)) was evaluated. Evaluation was carried out using bioindicators. such as the level of expression of each of the heat shock proteins (HSPs) and the silicatein enzyme in response to the compound. However, the expression was measured by SDS Polyacrylamide Gel Electrophoresis (SDS PAGE) and western blotting. The harmful concentration of GeO sub(2) that produced noticeable molecular changes in the studied samples during the first 6-24 hours was 6 μg/ml. The two studied soft corals as well as the ascidian responded to the harmful concentration of germanium oxide by expressing the heat-shock protein 90 (hsp90), while the two hard corals responded by expressing hsp70, C. crassa by decreasing the level of silicatein enzyme and sponge L. cortica produced no change by any of the used biomarkers, The soft coral Heteroxenia sp. was found to be sensitive to mechanical stress during the experiment and it was more sensitive to 6 μg/ml of GeO sub(2) than the other soft coral D. klunzingeri. The two studied hard corals were sensitive to mechanical stress during the experiment, but A. hyacinth us showed higher sensitivity than A. valenciennesi. However, these 2 corals displayed reverse response to GeO sub(2). Primitive evidences were found in the SDS PAGE to distinguish the tissue of the soft coral from that of the hard coral on the molecular level; the soft coral showed two prominent protein bands (45 and 50 kDa) while the two prominent protein bands for hard corals were 31 and 116 kDa.
Resumo:
Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching
Resumo:
An experiment was conducted to induce triploidy in African catfish, Clarias gariepinus, using heat shock and cold shock techniques. Cold shock at a temperature of 0± 1°C and 5±1°C for a duration of 15, 30, 45 and 60 min and heat shock at a temperature of 40±0.5°C and 41 ±OS C for a duration of 1, 2 and 3 min was given to induce triploidy 5 min after fertilization. Maximum percentage of triploids (91.4%) were obtained in the heat shock at a temperature of 40±0SC for a duration of 1 min whereas cold shock at 0± 1 C for a duration of 60 min yielded 90% of triploids. Chromosome analysis revealed that diploids have 54 chromosomes and triploids have 81 chromosomes. The erythrocyte measurements of the minor axis and major axis were 1.17 times larger in treated fish than in controls. The growth studies showed that the growth rate was not significantly affected in triploids.
Resumo:
An experiment was conducted to optimize the procedure of gynogenesis in African catfish, Clarias gariepinus by suppressing meiotic and mitotic cell divisions in fertilized eggs. Gynogensis was conducted by fertilizing normal eggs with UV-irradiated sperm followed by either heat or cold shocking Irradiation of spermatozoa was given for a duration of 1 min and the eggs were fertilized in vitro. Cold shock at a temperature of 3± 1°C for a duration of 30 and 60 min and heat shock at a temperature of 39± 1°C for a duration of 1 and 2 min was applied to induce diploidy. Higher percentage of hatching (68.66) was observed for meiotic gynogens at a shock temperature of 39± 1°C for a duration of 1 min, 5 min after fertilization (af). Higher percentage of mitotic gynogenetic induction (15.33) was observed at a temperature shock of 39± 1°C for a duration of 1 min, 30 min af.
Resumo:
Studies were undertaken to produce genetic clones derived from all homozygous mitotic gynogenetic individuals in rohu, Labeo rohita Ham. ln view of this, attempts were made to interfere with the normal functioning of the spindle apparatus during the first mitotic cell division of developing eggs using heat shocks, there by leading to the induction of mitotic gynogenetic diploids in the F1 generation. Afterwards, viable mitotic gynogenetic alevins were reared and a selected mature female fish was used to obtain ovulated eggs which were fertilized later with UV-irradiated milt. Milt was diluted with Cortland’s solution and the sperm concentration was maintained at 10⁸/ml. The UV-irradiation was carried out for 2 minutes at the intensity of 200 to 250 µW/cm² at 28± 1°C. The optimal heat shock of 40°C for 2 minutes applied at 25 to 30 minutes a.f. was used to induce mitotic gynogenesis in first (F1) generation and at 3 to 5 minutes a.f. to induce meiotic gynogenesis in the second (F2) generation. The results obtained are presented and the light they shed on the timing of the mitotic and meiotic cell division in this species is discussed.
Resumo:
The present experiment was designed to observe whether the nuclear volume and area are affected by the ploidy and hybrid status of the individual. Polyploidy was induced by heat shock treatment given at 44 ± 0.5°C for 30 seconds and 45 seconds which was found to be most effective (64.7%) for induction of triploidy in Cyprinus carpio. Cell and nuclear volume and cell and nuclear area varied significantly in triploid fishes as compared to those of controls. Triploid fishes showed significantly higher growth compared to diploid counterparts. It was also observed that catla x rohu hybrid and its parents showed significant difference in the nuclear volume and area of their erythrocytes. Except nuclear volume, all the parameters were significantly different between catla and catla x rohu hybrid. The hybrids showed a closer relationship with catla as compared to rohu.
Resumo:
A laboratory trial was conducted in a sea water recirculatory system to study the nutrient digestibility coefficients of diets with varying energy to protein ratios in Japanese flounder Paralicthys olivaceus. Six different experimental diets with two protein levels (45 and 55%) having six different energy to protein ratio of 87, 90, 94, 107, 110 and 114 were formulated using white fish meal and casein as protein sources. The results of the study showed that the apparent protein digestibility (APD) value ranged between 90.59 to 91.61% and there were no significant differences (P>0.05) between the APD values of diets 1, 2, 3, 4 and 6. The apparent lipid digestibility (ALD) values of diets ranged between 88.24 to 90.18%. The apparent energy digestibility (AED) values ranged between 80.55 to 87.52% with diet 3 producing significantly the highest AED value. In general, except in diet 1 the ALD and AED values increased with the increase of dietary lipid at both protein levels. The results of the present investigation indicated that Japanese flounder can efficiently digest the dietary nutrients at varying energy to protein ratios.
Resumo:
In this study heat budget components and momentum flux for August and January 1992 over the north Arabian Sea are computed. The marine meteorological data measured on board during the cruises of PAK-US joint project (NASEER) are used for the computation. Significant differences were found in the heat budget components as well as in the momentum flux during different monsoon periods over the north Arabian Sea. The latent heat flux was always positive and attributed to the large vapour pressure gradient. The computed moisture and latent heat fluxes in January were higher than August The highest value of latent heat flux 309 W/m2 at station 8 was evaluated. These higher latent heat fluxes were due to the large vapour pressure gradient, air-sea temperature difference, the wind speed, and the prevailing wind direction (from north and northeast). Negative values of sensible heat fluxes in both seasons indicate that the heat transfer was from the atmosphere to the ocean. The negative values of net heat gain indicate that the sea surface field became an energy sink: or the sea surface supplied more energy to the atmosphere than it received from it. Large variation in the momentum flux mainly attributed to the variation in the wind speed. Aerial averages of heat and momentum fluxes were also computed.
Resumo:
The effect of sodium lactate is compared with sucrose + sorbitol + sodium tri-poly phosphate as cryoprotectant on gel forming ability & protein denaturation of croaker surimi during frozen storage at -20±2°C for 90 days was evaluated. The quality of Croaker surimi with 6% (w/v) sodium lactate was examined in terms of biochemical parameters of muscle protein, thaw drip, gel strength and calcium ATPase activity :.omparing with those of surimi added with sucrose/sorbitol & without additive as control. Both the cryoprotectants minimized the negative effects of frozen storage on physico-chemical traits of myofibrillar proteins which was evident from the biochemical and sensory parameters. The residual Ca2+ ATPase activity and gel strength of surimi with sodium lactate were higher than those of control throughout 90 days of storage. Ca2+ A TPase activity and gel strength found a high positive correlation. From the results, it was found that sodium lactate was equally effective in preservation of croaker muscle protein native structure during frozen storage as the sucrose/ sorbitol and also less sweet without any risk of maillard browning.
Resumo:
Green scat namely as Scatophagus argus argus is a venomous aquarium fish belonging to Scatophagidae family. It can induce painful wounds in injured hand with partial paralysis to whom that touch the spines. Dorsal and ventral rough spines contain cells that produce venom with toxic activities. According to unpublished data collected from local hospitals in southern coastal region of Iran, S. argus is reported as a venomous fish. Envenomation induces clinical symptoms such as local pain, partial paralysis, erythema and itching. In the present study green scat (spotted scat) was collected from Persian Gulf coastal waters. SDS-PAGE indicated 12 distinct bands in the venom ranged between 10-250 KDa. The crude venom had hemolytic activity on human erythrocytes (1%) with an LC100 (Lytic Concentration) of about 1.7 μg. The crude venom can release 813 μg proteins from 0.5% casein. Phospholipase C activity was recorded at 3.125 μg of total venom. Our findings showed that the edematic activity remained over 48 h after injection. The purification of the venom was done by HPLC and 30 peaks were obtained within 80 min but only one peak in 68 min retention time showed hemolytic activity at 90% acetonitril was isolated. The area percentage of the hemolytic protein showed that this hemolytic protein consist of 32 percent of total proteins and its molecular weight was 72 KDa in SDS_PAGE. The results demonstrated that crude venom extracted from Iranian coastal border has different toxic and enzymatic activities.
Resumo:
The authors have attempted to compute the heat balance terms on the basis of formulas by Budyoko (1974). Some of the meteorological and oceanographic data were collected during the Trans Antarctic Expedition (1989-90). These data were supplemented by the data (1956-1988) made available by the national climatic center of NOAA (National Oceanic and Atmospheric Administration). Monthly means of sea surface temperature in Antarctic waters and meteorological data at a station (77°51'S; 166°39'E) 33m above sea level are given.
Resumo:
The main aim of this research was to identify fatty acids composition of Caspian sea of White fish Rutilus frisi kutum tissue and their changes during one year cold storage (-18Ċ).The secondary aim was to determine the changes of moisture, ash, protein, fat, and to investigate the effects of storage time on peroxide, TBAi, FFA, and extractability of myofibrillar proteins of the fish tissue during one year cold storage (-18 Ċ). 10 samples of (Rutilus frisi kutum) were randomly collected from Anzali landings. The samples were frozen at -30 Ċ and kept in cold storage at -18Ċ for one year. According to time table, the samples were examined. The results showed that 27 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 74/09 and 21/63 %, respectively, in fresh tissue. So that DHA (C22:6) oleic acid (C18:1c) had high amounts (15/07 ,20/57 ) among the UFA and palmitic acid (C16:0) was the most (13/09 %) among the SFA. The effects of freezing and cold storage on fish tissue showed that UFA and SFA contents have reached to 58/79 and 22/17 %, respectively, at the end of cold storage. It indicated that these compound change to each other during frozen storage. Also ω-3 and ω-6 series of fatty acids was 24/22 and 15/56% in fresh tissue, but their contents decreased to 8/68 and 5/11% at the end of period. Among the fatty acids C22:6, C18:1c and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level expected for C18:0. Results showed that moisture, ash, protein, and fat contents were 75/9±0/03, 1/28±0/012, 21/8±0/2, and 4/1±0/01 % respectively, in fresh tissue. The moisture, ash, protein, and fat contents were 72/3±0/04, 1/83±0/05, 1/91±0/01 and 19/9±0/01 % respectively, at the end of storage period. Lipid damage was measured on the basis of free fatty acids (FFA), peroxide value (PV), and Thiobarbituric acid index (TBA-i). PV, TBARS and FFA concentration of frozen Caspian Sea white fish stored at -18 Ċ the temporal variation of these three variables were statistically significant (p<0.001). Results of White fish myofibrillar proteins showed aggregation of bound reduced for stored at 12 months. SDS-PAGE analysis revealed that, the intensity of the myosin heavy chain and actin bound was reduced with increasing storage time. SDS-PAGE patterns showed that myosin heavy chain was much more susceptible to hydrolysis than actin. Key words: Rutilus frisi kutum, frozen storage, ω-3, ω-6, protein myofibrillar