12 resultados para growth variability

em Aquatic Commons


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Age estimates for striped trumpeter (Latris lineata) from Tasmanian waters were produced by counting annuli on the transverse section of sagittal otoliths and were validated by comparison of growth with known-age individuals and modal progression of a strong recruitment pulse. Estimated ages ranged from one to 43 years; fast growth rates were observed for the first five years. Minimal sexual dimorphism was shown to exist between length, weight, and growth characteristics of striped trumpeter. Seasonal growth variability was strong in individuals up to at least age four, and growth rates peaked approximately one month after the observed peak in sea surface temperature. A modified two-phase von Bertalanffy growth function was fitted to the length-at-age data, and the transition between growth phases was linked to apparent changes in physiological and life history traits, including offshore movement as fish approach maturity. The two-phase curve was found to represent the mean length at age in the data better than the standard von Bertalanffy growth function. Total mortality was estimated by using catch curve analysis based on the standard and two-phase von Bertalanffy growth functions, and estimates of natural mortality were calculated by using two empirical models, one based on longevity and the other based on the parameters L∞ and k from both growth functions. The interactions between an inshore gillnet fishery targeting predominately juveniles and an offshore hook fishery targeting predominately adults highlight the need to use a precautionary approach when developing harvest strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report we develop age-length keys and derive age-frequency data. We estimate striped bass and white perch mortality and growth rates, based on the otolith-aging analysis. We also report on hatch-date frequencies of striped bass and white perch larvae, and we discuss environmental effects on recruitment potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L∞. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extensive plankton collections were taken during seven September cruises (1990–93) along the inner continental shelf of the northcentral Gulf of Mexico (GOM). Despite the high productivity and availability of food during these cruises, significant small-scale spatial variability was found in larval growth rates for both Atlantic bumper (Chloroscombrus chrysurus, Carangidae) and vermilion snapper (Rhomboplites aurorubens, Lutjanidae). The observed variability in larval growth rates was not correlated with changes in water temperature or associated with conspicuous hydrographic features and suggested the existence of less-recognizable regions where conditions for growth vary. Cruise estimates of mortality coefficients (Z) for larval Atlantic bumper (n=32,241 larvae from six cruises) and vermilion snapper (n= 2581 larvae from four cruises) ranged from 0.20 to 0.37 and 0.19 to 0.29, respectively. Even in a subtropical climate like the GOM, where larval-stage durations may be as short as two weeks, observed variability in growth rates, particularly when combined with small changes in mortality rates, can cause order-of-magnitude differences in cumulative larval survival. To what extent the observed differences in growth rates at small spatial scales are fine-scale “noise” that ultimately is smoothed by larger-scale processes is not known. Future research is needed to further characterize the small-scale variability in growth rates of larvae, particularly with regard to microzooplankton patchiness and the temporal and spatial pattern of potential predators. Small-scale spatial variability in larval growth rates may in fact be the norm, and understanding the implications of this subtle mosaic may help us to better evaluate our ability to partition the causes of recruitment variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

English: Data obtained from tagging experiments initiated during 1953-1958 and 1969-1981 for skipjack tuna from the coastal eastern Pacific Ocean (EPO) are reanalyzed, using the Schnute generalized growth model. The objective is to provide information that can be used to generate a growth transition matrix for use in a length-structured population dynamics model. The analysis includes statistical approaches to include individual variability in growth as a function of length at release and time at liberty, measurement error, and transcription error. The tagging data are divided into northern and southern regions, and the results suggest that growth rates differ between the two regions. The Schnute model provides a significantly better fit to the data than the von Bertalanffy model, a sub-model of the Schnute model, for the northern region, but not for the southern region. Individual variation in growth is best described as a function of time at liberty and as a function of growth increment for the northern and southern regions, respectively. Measurement error is a significant part of the total variation, but the results suggest that there is no bias caused by the measurement error. Additional information, particularly for small and large fish, is needed to produce an adequate growth transition matrix that can be used in a length-structured population dynamics model for skipjack tuna in the EPO. Spanish: Los datos obtenidos de los experimentos de marcado iniciados durante los períodos de 1953- 1958 y de 1969-1981 para el atún barrilete en las costas del Océano Pacífico Oriental (OPO) fueron analizados nuevamente, utilizando el modelo de crecimiento generalizado de Schnute. El objetivo es brindar información que sea útil para producir una matriz sobre la tran-sición de crecimiento que pueda utilizarse en un modelo de dinámica poblacional estructurado por talla. El análisis usa enfoques estadísticos para poder incluir la variabilidad individual del crecimiento como función de la talla de liberación y tiempo en libertad, el error de medición, y el error de transcripción. Los datos de marcado son divididos en regiones norte y sur, y los resultados sugieren que las tasas de crecimiento en las dos regiones son diferentes. En la región norte, pero no en la región sur, el modelo de Schnute se ajusta significativamente mejor a los datos que el modelo von Bertalanffy, un sub-modelo del modelo de Schnute. La mejor descripción de la variación individual en el crecimiento es como una función del tiempo en libertad y como una función del incremento de crecimiento para las regiones norte y sur, respectivamente. El error de medición es una parte significativa de la variación total, pero los resultados sugieren que no existe un sesgo causado por el error de medición. Se necesita información adicional, particularmente para peces pequeños y grandes, para poder producir una matriz de transición de crecimiento adecuada que pueda utilizarse en el modelo de dinámica poblacional estructurado por tallas para el atún barrilete en el OPO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study documents validation of vertebral band-pair formation in spotted gully shark (Triakis megalopterus) with the use of fluorochrome injection and tagging of captive and wild sharks over a 21-year period. Growth and mortality rates of T. megalopterus were also estimated and a demographic analysis of the species was conducted. Of the 23 OTC (oxytetracycline) -marked vertebrae examined (12 from captive and 11 from wild sharks), seven vertebrae (three from captive and four from wild sharks) exhibited chelation of the OTC and fluoresced under ultraviolet light. It was concluded that a single opaque and translucent band pair was deposited annually up to at least 25 years of age, the maximum age recorded. Reader precision was assessed by using an index of average percent error calculated at 5%. No significant differences were found between male and female growth patterns (P>0.05), and von Bertalanffy growth model parameters for combined sexes were estimated to be L∞=1711.07 mm TL, k=0.11/yr and t0=–2.43 yr (n=86). Natural mortality was estimated at 0.17/yr. Age at maturity was estimated at 11 years for males and 15 years for females. Results of the demographic analysis showed that the population, in the absence of fishing mortality, was stable and not significantly different from zero and particularly sensitive to overfishing. At the current age at first capture and natural mortality rate, the fishing mortality rate required to result in negative population growth was low at F>0.004/ yr. Elasticity analysis revealed that juvenile survival was the principal factor in explaining variability in population growth rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new description of growth in blacklip abalone (Haliotis rubra) with the use of an inverse-logistic model is introduced. The inverse-logistic model avoids the disadvantageous assumptions of either rapid or slow growth for small and juvenile individuals implied by the von Bertalanffy and Gompertz growth models, respectively, and allows for indeterminate growth where necessary. An inverse-logistic model was used to estimate the expected mean growth increment for different black-lip abalone populations around southern Tasmania, Australia. Estimates of the time needed for abalone to grow from settlement until recruitment (at 138 mm shell length) into the fishery varied from eight to nine years. The variability of the residuals about the predicted mean growth increments was described with either a second inverse-logistic relationship (standard deviation vs. initial length) or by a power relationship (standard deviation vs. predicted growth increment). The inverse-logistic model can describe linear growth of small and juvenile abalone (as observed in Tasmania), as well as a spectrum of growth possibilities, from determinate to indeterminate growth (a spectrum that would lead to a spread of maximum lengths).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—Fisheries often target individuals based on size. Size-selective fishing can create selection differentials on life-history traits and, when those traits have a genetic basis, may cause evolution. The evolution of life history traits affects potential yield and sustainability of fishing, and it is therefore an issue for fishery management. Yet fishery managers usually disregard the possibility of evolution, because little guidance is available to predict evolutionary consequences of management strategies. We attempt to provide some generic guidance. We develop an individual-based model of a population with overlapping generations and continuous reproduction. We simulate model populations under size-selective fishing to generate and quantify selection differentials on growth. The analysis comprises a variety of common life-history and fishery characteristics: variability in growth, correlation between von Bertalanffy growth parameters (K and L∞), maturity rate, natural mortality rate (M), M/K ratio, duration of spawning season, fishing mortality rate (F), maximum size limit, slope of selectivity curve, age at 50% selectivity, and duration of fishing season. We found that each characteristic affected the magnitude of selection differentials. The most vulnerable stocks were those with a short spawning or fishing season. Under almost all life-history and fishery characteristics examined, selection differentials created by realistic fishing mortality rates are considerable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 50 years, much of the variability in ocean climate and herring recruitment has occurred at two dominant periods centered around 5 and 16 years. Herring growth has also exhibited a dominant 5- and 18-year periodicity. A recent analysis of a number of relevant time series suggests that interannual variations in oceanic conditions off the west coast of Vancouver Island affect survival of herring and their principal predator, Pacific hake, which also exhibits a marked 16-year oscillation in abundance. Thus the dynamics of the herring stock are modulated by a combination of climate and predator forcing. Much of the interannual variation in herring growth is centered around the 5-year (moderate ENSO period) and 16-year (strong ENSO period) ocean climate oscillations and the 16-year recruitment oscillation.