3 resultados para global significance level
em Aquatic Commons
Resumo:
Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate. (PDF contains 4 pages)
Resumo:
For raw, iced and frozen samples of fish and prawn, significant difference was observed in total plate counts done with various diluents, the significance level ranging from 5% to 0.1%. For raw fish, N-saline, seawater and quarter strength Ringers' solution gave maximum total plate counts. In the case of iced-fish, n-saline yielded highest total plate counts. For frozen samples, however, peptone water and n-saline gave good recoveries. Trials with suitable combinations of diluents showed that though some of them were as good as the control, namely n-saline, none were superior in any way.
Resumo:
Tiger prawn P.monodon) larvae utilize Brachionus a rotifer, as food in the Zoea 3 and mysis stages when they change from an herbivorous to an omnivorous diet. The present work aims to show the effects of furanace on the population growth of Brachionus. Cultures of Brachionus were obtained and fed with Chlorella at a density of 1-2x10 SUP-6 cells/ml. Five liters of the culture water were placed in each of 4 white, circular, 152x304 mm plastic basins. The mean initial densities of the rotifer ranged from 26 . 5 to 38 . 5 individuals/ml. The concentrations of furanace were 0, 1, 2 and 3 mg /l. The cultures were vigorously aerated. Population growth was observed after 3, 6, and 9 hours of exposure. The cultures were thoroughly mixed before samples were taken to ensure an almost equal distribution of the rotifers in the water. To facilitate the counting of the rotifer, one drop of Lugol's solution was added to each sample. This immobilizes the rotifer as well as stops further reproduction. Individuals with only the lorica left or with badly deformed lorica were considered dead. Population counts were done using a Sedgwick-Rafter counting chamber. Among the different durations of exposure, the percentage survival of the populations in the furanace baths were highest after 3 hr. There were slight increases in the control and 2 mg/l and slight decreases in 1 and 3 mg/l. The differences in the mean densities are statistically insignificant at . 01 significance level. After a 6-hr exposure, the control population reached its peak density with a survival of 89%. Populations in furanace baths decreased to 88 . 5% in both 2 and 3 mg /l followed closely by 87% in 1 mg/l. Again, no statistical differences exist among all the levels. The mean percentage survival in 1 and 2 mg/l increased (89% and 91%, respectively) after a 9-hr expsoure, while those in the control and 3 mg/l decreased to 86 . 5% and 88 . 25%, respectively. There were no marked differences in appearance noted among the individuals in furanace baths and those in the control.