15 resultados para geomorphic setting
em Aquatic Commons
Resumo:
The goal of this study was to test a technology that may help ensure a reliable and consistent supply of high quality and inexpensive clam seed to growers, thus fostering an emerging aquaculture industry by eliminating a seed shortage that limits sustainability. The overall objectives were to develop, test and demonstrate technical procedures and determine the financial feasibility of transferring remote setting technology from the Pacific Northwest molluscan shellfish industry to the hard clam aquaculture industry in Florida. (PDF has 44 pages.)
Resumo:
The requirement of setting annual catch limits to prevent overfishing has been added to the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006 (MSRA). Because this requirement is new, a body of applied scientific practice for deriving annual catch limits and accompanying targets does not yet exist. This article demonstrates an approach to setting levels of catch that is intended to keep the probability of future overfishing at a preset low level. The proposed framework is based on stochastic projection with uncertainty in population dynamics. The framework extends common projection methodology by including uncertainty in the limit reference point and in management implementation, and by making explicit the risk of overfishing that managers consider acceptable. The approach is illustrated with application to gag (Mycteroperca microlepis), a grouper that inhabits the waters off the southeastern United States. Although devised to satisfy new legislation of the MSRA, the framework has potential application to any fishery where the management goal is to limit the risk of overfishing by controlling catch.
Resumo:
We have developed a hierarchy of target levels, designated to address sustainability, efficiency, and recovery scenarios. Targets were derived from: 1) reported catches and effort in the commercial fishery, 2) statistics from fishery-independent surveys, and 3) knowledge of the biology of blue crab. Targets that are recommended include population sizes, catches, and effort levels, as well as reference fishing mortality rates. They are intended to be conservative and risk-averse. (PDF contains 182 pages)
Resumo:
NOAA’s National Centers for Coastal Ocean Science (NCCOS) conducts and supports research, monitoring, assessments, and technical assistance to meet NOAA’s coastal stewardship and management responsibilities. In 2001 the Biogeography Branch of NCCOS partnered with NOAA’s National Marine Sanctuary Program (NMSP) to conduct biogeographic assessments to support the management plan updates for the sanctuaries. The first biogeographic assessment conducted in this partnership focused on three sanctuaries off north/ central California: Cordell Bank, Gulf of the Farallones and Monterey Bay. Phase I of this assessment was conducted from 2001 to 2004, with the primary goal to identify and gather the best available data and information to characterize and identify important biological areas and time periods within the study area. The study area encompasses the three sanctuaries and extends along the coastal ocean off California from Pt. Arena to Pt. Sal (35°-39°N). This partnership project was lead by the NCCOS Biogeography Branch, but included over 90 contributors and 25 collaborating institutions. Phase I results include: 1) a report on the overall assessment that includes hundreds of maps, tables and analyses; 2) an ecological linkage report on the marine and estuarine ecosystems along the coast of north/central California, and 3) related geographic information system (GIS) data and other summary data files, which are available for viewing and download in several formats at the following website: http://ccma.nos.noaa.gov/products/biogeography/canms_cd/welcome.html Phase II (this report) was initiated in the Fall of 2004 to complete the analyses of marine mammals and update the marine bird colony information. Phase II resulted in significant updates to the bird and mammal chapters, as well as adding an environmental settings chapter, which contains new and existing data and maps on the study area. Specifically, the following Phase II topics and items were either revised or developed new for Phase II: •environmental, ecological settings – new maps on marine physiographic features, sea surface temperature and fronts, chlorophyll and productivity •all bird colony or roost maps, including a summary of marine bird colonies •updated at-sea data CDAS data set (1980-2003) •all mammal maps and descriptions •new overall density maps for eight mammal species •new summary pinniped rookery/haulout map •new maps on at-sea richness for cetaceans and pinnipeds •most text in the mammal chapter •new summary tables for mammals on population status and spatial and temporal patterns
Resumo:
The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the first subregion to be addressed by MARES, the Florida Keys/Dry Tortugas (FK/DT). What follows with regard to the FK/DT is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held December 9-10, 2009 at Florida International University in Miami, Florida.
Resumo:
The overall goal of the MARES (MARine and Estuarine goal Setting) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made both by policy makers and by natural resource and environmental management agencies. The document that follows briefly describes MARES overall and this systematic process. It then describes in considerable detail the resulting output from the first step in the process, the development of an Integrated Conceptual Ecosystem Model (ICEM) for the third subregion to be addressed by MARES, the Southeast Florida Coast (SEFC). What follows with regard to the SEFC relies upon the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations during workshops held throughout 2009–2012 in South Florida.
Resumo:
The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the second subregion to be addressed by MARES, the Southwest Florida Shelf (SWFS). What follows with regard to the SWFS is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held August 19-20, 2010 at Florida Gulf Coast University in Fort Myers, Florida.
Resumo:
The 66 kilo-Dalton (k-Da) protein split off from the cross linked myosin heavy chain (CMHC) formed due to the setting of Alaska pollack surimi, frozen-storage of Pacific cod flesh, and vinegar-curing of Pacific mackerel mince was identified as a light meromyosin (LMM). Puncture and stress-relaxation tests showed that the actomyosin subunits (AMS) of Alaska pollack surimi, upon setting at 30°C, transformed into gel, although the elasticity of this gel was very low when compared to the gels from surimi or actomyosin (AM). Electrophoretic studies showed that the band due to LMM in the gel from AMS gradually disappeared with the progress of setting but higher molecular weight polymer did not form. The intensity of the bands due to other myosin sub-fragments decreased a little. The findings suggest that at setting temperature, LMM of MHC molecule leads to an unfolding resulting in an intramolecular aggregation through non-covalent interactions, and thus plays a significant role in the crosslinking of MHC.
Resumo:
During the low temperature setting of fish paste, myosin heavy chain (MHC) is polymerized to cross-linked myosin heavy chain (CMHC), which is considered to occur by the action of endogenous transglutaminase (TGase). In this study the contribution of TGase on the setting of Alaska pollack surimi at different temperatures was studied. Alaska pollack surimi was ground with 3% NaCl, 30% h2o and with or without ethylene glycol bis (β-aminoethylether) N, N, N¹,N¹- tetra acetic acid (EGTA), an inhibitor of TGase. Among the pastes without EGTA, highest TGase activity was observed at 25°C but breaking force of the gel set at 25°C was lower than that set at 30°, 35°, and 40°C. Addition of EGTA (5m mol/kg) to the paste suppressed TGase activity at all setting temperatures from 20° to 40°C. Gelation of the pastes and cross-linking of MHC on addition of EGTA were suppressed completely at 20° and 25°C, partially at 30° and 35°C, and not at all at 40°C. The findings suggested that during the setting of Alaska pollack surimi TGase mediated cross-linking of MHC was strong at around 25°C but the thermal aggregation of MHC by non-covalent bonds was strong at above 35°C. Setting of surimi at 40°C and cross-linking of its MHC did not involve TGase.
Preliminary studies on predicting the setting season of oysters for the benefit of shellfish farmers
Resumo:
Preliminary findings from a spatfall forecasting programme initiated in April 1981 at Himamaylan River, Negros Occidental are presented. Two main activities are involved: 1) monitoring of daily counts of oyster larvae in the plankton; and 2) monitoring of actual setting of oysters on standardized collectors put in the vicinity of oyster farm sites. Findings indicate that when the count of mature larvae exceeds 5 per 100 ml sample and persists for at least 3 days, spat may be expected to occur shortly afterwards.
Resumo:
Meat to water ratio used for washing was 1:3 for oil sardine and mackerel; but for pink perch and croaker, it was 1:2. Again the washing process was repeated three times for oil sardine and mackerel; but two times for pink perch and croaker. The washed meat was mixed with 2.5% NaC1 and set at +5°C and +40°C for 1, 2 and 3hrs. The gel strength and expressible water content was measured. Basing on this study, setting temperature at +40°C was selected and with respect to time 1hr for sardine and mackerel and 3hrs for pink perch and croaker was selected.
Resumo:
Lake Victoria, besides being the second largest in the world after Lake Superior, is the largest tropical lake. Its waters are shared by Kenya (6% of the surface area), Uganda (43%), and Tanzania (51%). Before dramatic structural and functional changes manifested in the lake's ecosystem especially in the 1980s, fish life flourished in the lake's entire water column at all times of the year. Currently, the situation is much more different from what it was in the past. The exponential increase in the introduced Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) stocks, siltation, wetland degradation and eutrophication have characterised the lake ecosystem. The two exotic species and the small native cyprinid (Rastrineobola argentea) form the basis of the commercial fishery that was once dominated by two native tilapiines (Oreochromis esculentus and Oreochromis variabilis) and five other large-bodied endemic fishes. Severe deoxygenation observed at shallow depths (Ochumba 1990; Hecky et al., 1994) indicates that a large volume of the lake is unable to sustain fish life. The Lake Victoria catchment is one of the most densely populated areas in East Africa, encompassing a population of about 30 million people. Widespread poverty resulting from high inflation rates, lack of opportunities and general unemployment have characterised the lakeside communities over much of the last two decades. The biophysical environment in which Lake Victoria exists makes the lake particularly susceptible to changes that occur as a result of human modification to the watershed or the lake itself, thus rendering benefits from the lake unsustainable.