4 resultados para genetically modified mice
em Aquatic Commons
Resumo:
Assessment and management of risk is needed for sustainable use of genetically modified aquatic organisms (aquatic GMOs). A computer software package for safely conducting research with genetically modified fish and shellfish is described. By answering a series of questions about the organism and the accessible aquatic ecosystem, a researcher or oversight authority can either identify specific risks or conclude that there is a specific reason for safety of the experiment. Risk assessment protocols with examples involving transgenic coho salmon, triploid grass carp and hybrid tilapia are described. In case a specific risk is identified, the user is led to consider risk management measures, involving culture methods, facilities design and operations management, to minimize the risk. Key features of the software are its user-friendly organization; easy access to explanatory text, literature citations and glossary; and automated completion of a worksheet. Documented completion of the Performance Standards can facilitate approval of a well designed experiment by oversight authorities.
Resumo:
This article contains a discussion paper on the use of exotic species and genetically modified organisms in aquaculture and enhanced fisheries, together with a summary of ICLARM's (International Center for Living Aquatic Resources Management, Philippines) current position on this important topic.
Resumo:
This paper examines the practice and products of biotechnology from the viewpoint of bioethics, looking at four cases where aquatic biotechnology and bioethics intersect. The four cases applied are: Case 1. Genetic modification of animals; Case 2. Genetically Modified Organisms (GMO) as food; Case 3. Environmental applications of GMOs; Case 4. Intellectual property production for GMOs and DNA sequences.
Resumo:
Experiments were conducted to develop and standardize the protocols for cryopreservation of sperm of common carp, Cyprinus carpio and also for using the cryopreserved sperm for fertilization of eggs. Nine extender solutions as Alsever's solution, kurokura-1, kurokura-2, urea egg-yolk, egg-yolk citrate, 0.6% glucose, 0.9% NaCl, Ma and Mb, and five cryoprotectants namely ethanol, methanol, dimethylsulfoxide (DMSO), dimethylamine (DMA) and glycerol were tested. The cryoprotectants were mixed at 10% concentration of the extenders (v/v) to make the cryodiluents. Milt and cryodiluents were mixed at a ratio of 1:9 for Alsever's solution, kurokura-1, kurokura-2, 0.6% glucose and 0.9% NaCl, 1:4 for urea egg-yolk, egg-yolk citrate, Ma and Mb. Among the cryodiluents Alsever's solution mixed with either ethanol or methanol was found to be suitable and it produced more than 90% and 80% spermatozoan motility at equilibrium and post-thaw periods, respectively. Kurokura-1 and kurokura-2 when mixed with the same cryoprotectants showed good spermatozoan motility at equilibrium period (80-90%) but the motility was reduced (30-55%) at post-thaw state. Other extenders did not produce acceptable sperm-motility and in some cases the frozen milt became clotted. Different dilution ratios (1:1, 1:2, 1:4, 1:5, 1:7, 1:9, 1:12, 1:15, 1:20) were formulated for obtaining a suitable milt dilution, the dilution ratio of 1: 9 (milt : cryodiluent) demonstrated the highest post-thaw spermatozoan motility (80%) in Alserver's solution. The optimum concentration of cryoprotectants in the cryodiluents was determined, 10% concentration level was found to be effective to produce the highest number of spermatozoan motility in comparison to the other concentrations (5%, 15%, 20% 30%). Sperm preserved with the cryodiluent Alsever's solution along with either methanol or ethanol was found to be effective to fertilize eggs and produce hatchlings. The hatching rates ranged between 1.48% and 14.76%, compare to control. The fish produced through use of cryopreserved sperm and normal sperm were found to grow well and no significant (P<0.05) growth difference was observed between them. In case of silver barb, Barbonymus gonionotus, sperm tested against six extenders such as egg-yolk citrate, urea-egg-yolk, kurokura-1, kurokura-2, 0.9% NaCl and modified fish ringer (MFR) solution. Cryoprotectants used were the same as those of C. carpio. Milt was diluted with the cryodiluent at a ratio of 1:4 for egg-yolk citrate and urea-egg-yolk, 1:5 for kurokura-1 and 1:9 for 0.9% NaCl, MFR and kurokura-2. The cryoprotectant concentration was maintained at 10% of the extender (v/v) in all the cases. Among the extenders, egg-yolk citrate and urea-egg-yolk mixed with 10% DMSO, methanol and ethanol produced 50% post-thaw spermatozoan motility, whereas DMA and glycerol provided only 10% motility. Trials on milt dilution ratio and cryoprotectant concentration are being conducted. Fertilization trials are also underway.