8 resultados para generalized additive models
em Aquatic Commons
Resumo:
The foraging ecology of bottlenose dolphins Tursiops truncatus in the Northwest Florida Panhandle and estuaries in northern Georgia was determined using diet analysis and behavioral surveys. Stomach content analysis was completed on bottlenose dolphins(N = 25) that stranded in the Northwest Florida Panhandle from November 2006 to March 2009. The most abundant prey species were spot Leiostomus xanthurus (20.4%), squid (10.9%), pinfish Lagodon rhombiodes (10.3%), and Atlantic croaker Micropogonias undulatus (8.5%). Dolphins that stranded during months with a red tide Karenia brevis bloom consumed more pinfish, and spot; whereas dolphins that stranded in non-bloom months consumed more squid, Atlantic croaker, and silver perch Bairdiella chrysoura. Differences in diet were also identified for dolphins that stranded inside bays/sound and dolphin that stranded outside of bays along the coast, and male and female dolphins. Surveys were conducted from south of the Savannah River to north of Ossabaw Sound in Georgia where foraging behaviors were classified. Multivariate Generalized Additive Models were used to test correlations of behaviors to dolphin group size, depth, salinity, temperature, creek width, and tide. Sightings with headstands (p = 0.009), hard stops (p = 0.019), chasing (p = 0.004), mudbank whacking (p < 0.001), herding/circling (p = 0.024), and strand feeding (p = 0.006) were correlated with shallow water or small creeks. Sightings with kerplunking (p = 0.031), mudbank whacking (p = 0.001), strand feeding (p = 0.003), and herding/circling (p = 0.026) were significantly correlated with low tide. The results of the Savannah, Georgia study were the first to characterize foraging behaviors in this area and demonstrate how bottlenose dolphins utilize the salt marsh estuary in terms of foraging. Studies like these are important to determine how dolphins forage efficiently and to provide background information on diet and foraging behavior for use in monitoring future impacts to dolphins in the Northwest Florida Panhandle and near Savannah, Georgia.
Influence of soak time and fish accumulation on catches of reef fishes in a multispecies trap survey
Resumo:
Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.
Resumo:
In May 2001, the National Marine Fisheries Service (NMFS) opened two areas in the northwestern Atlantic Ocean that had been previously closed to the U.S. sea scallop (Placopecten magellanicus) dredge fishery. Upon reopening these areas, termed the “Hudson Canyon Controlled Access Area” and the “Virginia Beach Controlled Access Area,” NMFS observers found that marine turtles were being caught incidentally in scallop dredges. This study uses the generalized linear model and the generalized additive model fitting techniques to identify environmental factors and gear characteristics that influence bycatch rates, and to predict total bycatch in these two areas during May-December 2001 and 2002 by incorporating environmental factors into the models. Significant factors affecting sea turtle bycatch were season, time-of-day, sea surface temperature, and depth zone. In estimating total bycatch, rates were stratified according to a combination of all these factors except time-of-day which was not available in fishing logbooks. Highest bycatch rates occurred during the summer season, in temperatures greater than 19°C, and in water depths from 49 to 57 m. Total estimated bycatch of sea turtles during May–December in 2001 and 2002 in both areas combined was 169 animals (CV=55.3), of which 164 (97%) animals were caught in the Hudson Canyon area. From these findings, it may be possible to predict hot spots for sea turtle bycatch in future years in the controlled access areas.
Resumo:
ENGLISH: Monthly estimates of the abundance of yellowfin tuna by age groups and regions within the eastern Pacific Ocean during 1970-1988 are made, using purse-seine catch rates, length-frequency samples, and results from cohort analysis. The numbers of individuals caught of each age group in each logged purse-seine set are estimated, using the tonnage from that set and length-frequency distribution from the "nearest" length-frequency sample(s). Nearest refers to the closest length frequency sample(s) to the purse-seine set in time, distance, and set type (dolphin associated, floating object associated, skipjack associated, none of these, and some combinations). Catch rates are initially calculated as the estimated number of individuals of the age group caught per hour of searching. Then, to remove the effects of set type and vessel speed, they are standardized, using separate weiznted generalized linear models for each age group. The standardized catch rates at the center of each 2.5 0 quadrangle-month are estimated, using locally-weighted least-squares regressions on latitude, longitude and date, and then combined into larger regions. Catch rates within these regions are converted to numbers of yellowfin, using the mean age composition from cohort analysis. The variances of the abundance estimates within regions are large for 0-, 1-, and 5-year-olds, but small for 1.5- to 4-year-olds, except during periods of low fishing activity. Mean annual catch rate estimates for the entire eastern Pacific Ocean are significantly positively correlated with mean abundance estimates from cohort analysis for age groups ranging from 1.5 to 4 years old. Catch-rate indices of abundance by age are expected to be useful in conjunction with data on reproductive biology to estimate total egg production within regions. The estimates may also be useful in understanding geographic and temporal variations in age-specific availability to purse seiners, as well as age-specific movements. SPANISH: Se calculan estimaciones mensuales de la abundancia del atún aleta amarilla por grupos de edad y regiones en el Océano Pacífico oriental durante 1970-1988, usando tasas de captura cerquera, muestras de frecuencia de talla, y los resultados del análisis de cohortes. Se estima el número de individuos capturados de cada grupo de edad en cada lance cerquero registrado, usando el tonelaje del lance en cuestión y la distribución de frecuencia de talla de la(s) muestra(s) de frecuencia de talla "más cercana/s)," "Más cercana" significa la(s) muestra(s) de frecuencia de talla más parecida(s) al lance cerquero en cuanto a fecha, distancia, y tipo de lance (asociado con delfines, con objeto flotante, con barrilete, con ninguno de éstos, y algunas combinaciones). Se calculan inicialmente las tasas de captura como el número estimado de individuos del grupo de edad capturado por hora de búsqueda. A continuación, para eliminar los efectos del tipo de lance y la velocidad del barco, se estandardizan dichas tasas, usando un modelo lineal generalizado ponderado, para cada grupo por separado. Se estima la tasa de captura estandardizada al centro de cada cuadrángulo de 2.5°-mes, usando regresiones de mínimos cuadrados ponderados localmente por latitud, longitud, y fecha, y entonces combinándolas en regiones mayores. Se convierten las tasas de captura dentro de estas regiones en números de aletas amarillas individuales, usando el número promedio por edad proveniente del análisis de cohortes. Las varianzas de las estimaciones de la abundancia dentro de las regiones son grandes para los peces de O, 1, Y5 años de edad, pero pequeñas para aquellos de entre 1.5 Y4 años de edad, excepto durante períodos de poca actividad pesquera. Las estimaciones de la tasa de captura media anual para todo el Océano Pacífico oriental están correlacionadas positivamente de forma significativa con las estimaciones de la abundancia media del análisis de las cohortes para los grupos de edad de entre 1.5 y 4 años. Se espera que los índices de abundancia por edad basados en las tasas de captura sean útiles, en conjunto con datos de la biología reproductiva, para estimar la producción total de huevos por regiones. Las estimaciones podrían asimismo ser útiles para la comprensión de las variaciones geográficas y temporales de la disponibilidad específica por edad a los barcos cerqueros, y también las migraciones específicas por edad. (PDF contains 35 pages.)
Resumo:
ENGLISH: Longline hook rates of bigeye and yellowfin tunas in the eastern Pacific Ocean were standardized by maximum depth of fishing, area, and season, using generalized linear models (GLM's). The annual trends of the standardized hook rates differ from the unstandardized, and are more likely to represent the changes in abundance of tunas in the age groups most vulnerable to longliners in the fishing grounds. For both species all of the interactions in the GLM's involving years, depths of fishing, areas, and seasons were significant. This means that the annual trends in hook rates depend on which depths, areas, and seasons are being considered. The overall average hook rates for each were estimated by weighting each 5-degree quadrangle equally and each season by the number of months in it. Since the annual trends in hook rates for each fishing depth category are roughly the same for bigeye, total average annual hook rate estimates are possible with the GLM. For yellowfin, the situation is less clear because of a preponderance of empty cells in the model. The full models explained 55% of the variation in bigeye hook rate and 33% of that of yellowfin. SPANISH: Se estandardizaron las tasas de captura con palangre de atunes patudo y aleta amarilla en el Océano Pacífico oriental por la profunidad máxima de pesca, área, y temporada, usando modelos lineales generalizados (MLG). Las tendencias anuales de las tasas de captura estandardizadas son diferentes a las de las tasas no estandardizadas, y es más que representen los cambios en la abundancia de los atunes en los grupos de edad más vulnerables a los palangreros en las áreas de pesca. Para ambas especies fueron significativas todas las interacciones en los MLG con año, profundidad de pesca, área, y temporada. Esto significa que las tendencias anuales de las tasas de captura dependen de cuál profundidad, área, y temporado se está considerando. Para la estimación de la tasa de captura general media para cada especie se ponderó cada cuadrángulo de 5 grados igualmente y cada temporada por el número de meses que contiene. Ya que las tendencias anuales en las tasas de captura para cada categoría de profundidad de pesca son aproximadamente iguales para el patudo, son posibles estimaciones de la tasa de captura anual media total con el MLG. En el caso del aleta amarilla, la situación es más confusa, debido a una preponderancia de celdas vacías en el modelo. Los modelos completos explican el 55% de la variación de la tasa de captura de patudo y 33% de la del aleta amarilla. (PDF contains 19 pages.)
Resumo:
We compared numbers of strikes, proportions of fish that hooked up after strikes, proportions of fish that stayed on hook (retained) after hook up, and numbers of fish caught between circle and J hooks rigged with dead natural fish bait (ballyhoo)and trolled for three oceanic predator species: dolphinfish (Coryphaena hippurus), yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri). Interactions were compared between circle and J hooks fished on 75 trips by two user groups (charter and recreational fishermen). Hooks were affixed to three species-specific leader types most commonly fished in this region: monofilament (dolphinfish), fluorocarbon (tuna), and wire (wahoo). Numbers of fish caught per trip and three potential mechanisms that might inf luence numbers caught (i.e., number of strikes, proportion of fish hooked, and proportion retained) were modeled with generalized linear models that considered hook type, leader type, species, user (fishing) group, and wave height as main effects. Hook type was a main effect at the catch level; generally, more fish were caught on J hooks than on circle hooks. The effect of hook type on strike rates was equivocal. However, J hooks had a greater proportion of hook-ups than did circle hooks. Finally, the proportion of fish retained once hooked was generally equal between hook types. We found similar results when data from additional species were pooled as a “tuna” group and a “mackerel” group. We conclude that J hooks are more effective than circle hooks at the hook-up level and result in greater numbers of troll-caught dolphinfish, tunas
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
The Common Octopus, Octopus vulgaris, is an r-selected mollusk found off the coast of North Carolina that interests commercial fishermen because of its market value and the cost-effectiveness of unbaited pots that can catch it. This study sought to: 1) determine those gear and environmental factors that influenced catch rates of octopi, and 2) evaluate the feasibility of small-scale commercial operations for this species. Pots were fished from August 2010 through September 2011 set in strings over hard and sandy bottom in waters from 18 to 30 m deep in Onslow Bay, N.C. Three pot types were fished in each string; octopus pots with- and without lids, and conch pots. Proportional catch was modeled as a function of gear design and environmental factors (location, soak time, bottom type, and sea surface water temperature) using binomially distributed generalized linear models (GLM’s); parsimony of each GLM was assessed with Akaike Information Criteria (AIC). A total of 229 octopi were caught throughout the study. Pots with lids, pots without lids, and conch pots caught an average of 0.15, 0.17, and 0.11 octopi, respectively, with high variability in catch rates for each pot type. The GLM that best fit the data described proportional catch as a function of sea surface temperature, soak time, and station; greatest proportional catches occurred over short soak times, warmest temperatures, and less well known reef areas. Due to operating expenses (fuel, crew time, and maintenance), low catch rates of octopi, and high gear loss, a directed fishery for this species is not economically feasible at the catch rates found in this study. The model fitting to determine factors most influential on catch rates should help fishermen determine seasons and gear soak times that are likely to maximize catch rates. Potting for octopi may be commercially practical as a supplemental activity when targeting demersal fish species that are found in similar habitats and depth ranges in coastal waters off North Carolina.