2 resultados para gas production technique
em Aquatic Commons
Resumo:
In the present study, natural occurrence of fungi and aflatoxin B1 (AFB1) in pellet feed and feed ingredients used for rainbow trout was investigated with emphasis to Aspergillus section Flavi members and medicinal plants inhibitory to Aspergillus growth and/or AF production. The feed samples were cultured on the standard isolation media including dichloran rosebengal chloramphenicol agar (DRCA) and Aspergillus flavus/parasiticus agar (AFPA) for 2 weeks at 28 °C. Identification of fungal isolates was implemented based on the macro- and microscopic morphological criteria. AFs were detected using high performance liquid chromatography (HPLC). Based on the results obtained, a total of 109 fungal isolates were identified of which Aspergillus was the prominent genus (57.0%), followed by Penicillium (12.84%), Absidia (11.01%) and Pseudallscheria (10.10%). The most frequent Aspergillus species was A. flavus (60.66%) isolated from all the feed ingredients as well as pellet feed. Among 37 A. flavus isolates, 19 (51.35%) were able to produce AFB1 on yeast extract-sucrose (YES) broth in the range of 10.2 to 612.8 [tg/g fungal dry weight. HPLC analyses of trout feed showed that pellet feed and all feed ingredients tested except gluten were contaminated with different levels of AFB1 in the range of 1.83 to 67.35 lig/kg. In order to finding natural inhibitors of fungal growth and/or AF production, essential oils (EOs) and extracts of 49 medicinal plants were studied against an aflatoxin-producing A. parasiticus using a microbioassay technique. The EOs was analyzed by gas chromatography/mass spectrometry (GC/MS). Based on the results obtained, Achillea millefolium sub sp. elborsensis, Ferula gummosa, Mentha spicata, Azadirachta indica, Conium maculatum and Artemisia dracunculus remarkably inhibited A. parasiticus growth without affecting AF production by the fungus. Besides of Thymus vulgaris and Citrus aurantifolia, the EO of Foeniculum vulgare significantly inhibited both fungal growth (-70.0%) and AFs B1 and G1 (-99.0%) production. The EO of Carum carvi and ethyl acetate extract of Platycladus orientalis suppressed AFs B1 and G1 by more than 90.0%, without any obvious effect on fungal growth. The IC50 values of bioactive plants for AFs B1 and G1 were determined in the ranges of 90.6 to 576.2 and 2.8 to 61.9 µg/ml, respectively. Overall, results of the present study indicate the importance of AF contamination of trout feed as a risk factor for fish farming and thus, an urgent necessity for constant monitoring of trout feed for any unacceptable levels of AF contamination. Likewise, antifungal activities of bioactive plants introduced here would be an important contribution to explain the use of these plants as effective antimicrobial candidates to protect feeds from toxigenic fungus growth and subsequent AF contamination.
Resumo:
In the study, the production efficiency of catfish in Cross River State was determined. Data was obtained from 120 fish farmers were randomly selected from Cross River Agricultural Zones, using a multistage random sampling technique. Multiple regression analysis model was the main tool of data analysis where different functions were tried. The results indicated that Cobb-Douglass production function had the best fit in explaining the relationship between output of catfish and inputs used, the coefficient of multiple determinant (R2 = 0.61) indicates that sixtyone percent of the variability in output of catfish is explained by the independent variables. The results also indicate that farmers’ educational level positively influence their level of efficiency in catfish production in the study area. The F-value of 16.427 indicates the overall significance of the model at 1 percent level, indicating that there is a significant linear relationship between the independent variables taken together and the yield of catfish produced in Cross River State. The marginal value products of fish pond size (farm size), labour and feed (diet) were N67.50, N 178.13 and N 728.00 respectively, while allocative efficiency for (farm size), labour and feed (diet) were (0.09 over utilized, 2.85 under utilized and 0.99 over utilized), respectively, there existed allocative in-efficiency, there is a high potential for catfish farmers to increase their yields and income. Based on the findings of this study, it is recommended that fish farmers should expand fish farms, improving on production efficiency and adopting new technologies. Regular awareness campaign about new technologies in fish farming should be embarked by extension agents to make fish farmers know the importance of adopting new technologies. KEYWORDS: Production efficiency, Catfish, Cobb-Douglass, Production function, Cross River State