5 resultados para fonctions of interpretative arguments
em Aquatic Commons
Resumo:
The increasingly intense competition between commercial and recreational fishermen for access to fish stocks has focused attention on the economic implications of fishery allocations. Indeed, one can scarcely find a management plan or amendment that does not at least refer to the relative food and sport values of fish and to how expenditures by commercial and recreational fishermen on equipment and supplies stimulate the economy. However, many of the arguments raised by constituents to influence such allocations, while having an seemingly "economics" ring to them, are usually incomplete, distorted, and even incorrect. This report offers fishery managers and other interested parties a guide to correct notions of economic value and to the appropriate ways to characterize, estimate, and compare value. In particular, introductory material from benefitcost analysis and input-output analysis is described and illustrated. In the process, several familiar specious arguments are exposed.(PDF file contains 34 pages.)
Resumo:
This report presents discharge, chemical analyses, temperatures, and specific conductance records collected at 25 surface-water sites and chemical analyses of ground water, well descriptions and records of ground-water levels collected at 164 ground-water sites. It also contains 35 logs of the sedimentary rocks penetrated in the drilling of wells and test borings ranging in depth from 147 to 625 feet. These hydrologic data were collected as part of an investigation of the water resources of the county. The interpretative results of the investigation are in the report entitled, "Water resources of Walton County," by C. A. Pascale (in preparation, 1971). (108 page document)
Resumo:
The impact of mechanical stresses upon ichthyoplankton entrained in power plant cooling systems has long been considered negligible. Arguments and evidence exist, however, to show that such a supposition is not universally true, especially in nuclear power plants. The mechanisms of mechanical damage can be detailed in terms of pressure change, acceleration, and shear stress with in the fluid flow field. Laboratory efforts to quantify the effects of mechanical stress have been very sparse. A well-planned bioassay is urgently needed. (PDF has 11 pages.)
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Resumo:
To improve the cod stocks in the Baltic Sea, a number of regulations have recently been established by the International Baltic Sea Fisheries Commission (IBSFC) and the European Commission. According to these, fishermen are obliged to use nets with escape windows (BACOMA nets) with a mesh size of the escape window of 120 mm until end of September 2003. These nets however, retain only fish much larger than the legal minimum landing size would al-low. Due to the present stock structure only few of such large fish are however existent. As a consequence fishermen use a legal alternative net. This is a conventional trawl with a cod-end of 130 mm diamond-shaped meshes (IBSFC-rules of 1st April 2002), to be increased to 140 mm on 1st September 2003, according to the mentioned IBSFC-rule. Due legal alterations of the net by the fishermen (e.g. use of extra stiff net material) these nets have acquired extremely low selective properties, i. e. they catch very small fish and produce great amounts of discards. Due to the increase of the minimum landing size from 35 to 38 cm for cod in the Baltic, the amount of discards has even increased since the beginning of 2003. Experiments have now been carried out with the BACOMAnet on German and Swedish commercial and research vessels since arguments were brought forward that the BACOMA net was not yet sufficiently tested on commercial vessels. The results of all experiments conducted so far, are compiled and evaluated here. As a result of the Swedish, Danish and German initiative and research the European Commission reacted upon this in June 2003 and rejected the increase of the diamond-meshed non-BACOMA net from 130 mm to 140mm in September 2003. To protect the cod stocks in the Baltic Sea more effectively the use of traditional diamond meshed cod-ends with-out escape window are prohibited in community waters without derogation, becoming effective 1st of September 2003. To enable more effective and simplified control of the bottom trawl fishery in the Baltic Sea the principle of a ”One-Net-Rule“ is enforced. This is going to be the BACOMA net, with the meshes of the escape window being 110 mm for the time being. The description of the BACOMA net as given in the IBSFC-rules no.10 (revision of the 28th session, Berlin 2002) concentrates on the cod-end and the escape window but only to a less extent on the design and mesh-composition of the remaining parts of the net, such as belly and funnel and many details. Thus, the present description is not complete and leaves, according to fishermen, ample opportunity for manipulation. An initiative has been started in Germany with joint effort from scientists and the fishery to better describe the entire net and to produce a proposal for a more comprehensive description, leaving less space for manipulation. A proposal in this direction is given here and shall be seen as a starting point for a discussion and development towards an internationally uniform net, which is agreed amongst the fishery, scientists and politicians. The Baltic Sea fishery is invited to comment on this proposal, and recommendations for further improvement and specifications are welcomed. Once the design is agreed by the Baltic Fishermen Association, it shall be proposed to the IBSFC and European Commission via the Baltic Fishermen Association.