7 resultados para fish farming
em Aquatic Commons
Resumo:
This manual was written as part of the Integrated Research in Development for Improved Livelihoods Programme in Northern Province, Zambia (IRDLP) and is primarily intended for extension agents to use with smallholder farmers engaged in semi-intensive fish farming in Northern Zambia. The IRDLP is an Irish Aid-funded project implemented by WorldFish, Harvest Plus and the Center for International Forestry Research (CIFOR). The goal of the IRDLP is to help improve the livelihoods, health status, and food and nutrition security of resource-poor households in the Mbala and Luwingu districts in Northern Zambia, especially women and vulnerable groups. This is achieved through generating and providing evidence-based information, scientific technologies and livelihood solutions to trigger community and farmer innovations for positive change. This manual provides information on how smallholder fish farmers can improve fish production in Northern Zambia, particularly in the Luwingu and Mbala districts, through integrated farming practices.
Resumo:
Fish are an important part of Bangladeshi culture and diet. Bangladesh ranks among the top five freshwater fish producers in the world. Fish are abundant in the thousands of rivers, ponds, lakes and seasonal floodplains across the country. They are a major source of protein for people living near these water bodies. In Bangladesh, many households depend on fish farming for their livelihood. By growing fish in homestead ponds, households have a consistent supply of nutritious fish and can sell the surplus for an income. The USAID-funded Cereal Systems Initiative for South Asia in Bangladesh (CSISA-BD) aimed to increase the income of farming households through increased productivity of aquaculture systems. Key activities of the project included developing and disseminating appropriate improved agricultural technology and quality fish seeds to improve livelihoods, food security and nutrition.
Resumo:
In the study, the production efficiency of catfish in Cross River State was determined. Data was obtained from 120 fish farmers were randomly selected from Cross River Agricultural Zones, using a multistage random sampling technique. Multiple regression analysis model was the main tool of data analysis where different functions were tried. The results indicated that Cobb-Douglass production function had the best fit in explaining the relationship between output of catfish and inputs used, the coefficient of multiple determinant (R2 = 0.61) indicates that sixtyone percent of the variability in output of catfish is explained by the independent variables. The results also indicate that farmers’ educational level positively influence their level of efficiency in catfish production in the study area. The F-value of 16.427 indicates the overall significance of the model at 1 percent level, indicating that there is a significant linear relationship between the independent variables taken together and the yield of catfish produced in Cross River State. The marginal value products of fish pond size (farm size), labour and feed (diet) were N67.50, N 178.13 and N 728.00 respectively, while allocative efficiency for (farm size), labour and feed (diet) were (0.09 over utilized, 2.85 under utilized and 0.99 over utilized), respectively, there existed allocative in-efficiency, there is a high potential for catfish farmers to increase their yields and income. Based on the findings of this study, it is recommended that fish farmers should expand fish farms, improving on production efficiency and adopting new technologies. Regular awareness campaign about new technologies in fish farming should be embarked by extension agents to make fish farmers know the importance of adopting new technologies. KEYWORDS: Production efficiency, Catfish, Cobb-Douglass, Production function, Cross River State
Resumo:
Carp (Cyprinus Carpio L.) were first recommend for Uganda in 1941 by Dr. Hornell who was Oolonial Fisheries Adviser at that time. He stated that they would be suitable for Lake Bunyoni (6,474 ft.) in Kigezi District where the cold made conditions marginal for Tilapia and yet where the water was too warm for trout. Later, in 1947, when fish farming was proposed for Uganda, an expert from Israel whose visit was arranged by Dr. Hickling, the then current Colonial Fisheries Adviser, recommended that carp should be used as the stock fish in the ponds rather than Tilapia which Dr. Hickling himself had suggested.
Resumo:
Lake Nakivali is one of the four small lakes that form what is known as the Koki lakes system. It is 14 km long, 6 km wide, 26 km2 in area and has maximum depth of 3.5 m at high water level. The lake is located in a lake-swamp complex with River Rwizi as the principle inflow, and a number of peripheral lakes among which are four major ones, i.e. Lakes Nakivali, Mburo, Kachira, and Kijanebalola. The survey therefore established that Lake Nakivali is a healthy ecosystem capable of sustaining fisheries production. While stock enhancement through restocking with fry could boost fish stocks, especially of the Nile tilapia, effective management measures that allow natural regeneration of stocks of indigenous fish species is paramount. This may require closed fishing seasons and control of fishing effort. Tank aquaculture is a viable option for increasing fish production and Ngege (O. niloticus) and Male (C. gariepinus) are candidate fish species for fish farming.
Resumo:
The fisheries section of the annual report covers information from the following regions: Lake Albert Region: Introduction Staff Launch Licensing Production Export to the Belgian Congo Marketing Departmental Activities Sporting Fishing Statistics Rainfall and Fish Landing Acholi region Lakes George/Edward Region: Introduction General Lake George The Kazinga Channel-Katunguru Lake Edward Minor Lakes Ruwenzori Trout Fisheries Launch Records of Catches Lake Kyoga Region: Introduction General Lake, Kyoga and Minor Lakes Production and fish farming
Resumo:
In the present study, natural occurrence of fungi and aflatoxin B1 (AFB1) in pellet feed and feed ingredients used for rainbow trout was investigated with emphasis to Aspergillus section Flavi members and medicinal plants inhibitory to Aspergillus growth and/or AF production. The feed samples were cultured on the standard isolation media including dichloran rosebengal chloramphenicol agar (DRCA) and Aspergillus flavus/parasiticus agar (AFPA) for 2 weeks at 28 °C. Identification of fungal isolates was implemented based on the macro- and microscopic morphological criteria. AFs were detected using high performance liquid chromatography (HPLC). Based on the results obtained, a total of 109 fungal isolates were identified of which Aspergillus was the prominent genus (57.0%), followed by Penicillium (12.84%), Absidia (11.01%) and Pseudallscheria (10.10%). The most frequent Aspergillus species was A. flavus (60.66%) isolated from all the feed ingredients as well as pellet feed. Among 37 A. flavus isolates, 19 (51.35%) were able to produce AFB1 on yeast extract-sucrose (YES) broth in the range of 10.2 to 612.8 [tg/g fungal dry weight. HPLC analyses of trout feed showed that pellet feed and all feed ingredients tested except gluten were contaminated with different levels of AFB1 in the range of 1.83 to 67.35 lig/kg. In order to finding natural inhibitors of fungal growth and/or AF production, essential oils (EOs) and extracts of 49 medicinal plants were studied against an aflatoxin-producing A. parasiticus using a microbioassay technique. The EOs was analyzed by gas chromatography/mass spectrometry (GC/MS). Based on the results obtained, Achillea millefolium sub sp. elborsensis, Ferula gummosa, Mentha spicata, Azadirachta indica, Conium maculatum and Artemisia dracunculus remarkably inhibited A. parasiticus growth without affecting AF production by the fungus. Besides of Thymus vulgaris and Citrus aurantifolia, the EO of Foeniculum vulgare significantly inhibited both fungal growth (-70.0%) and AFs B1 and G1 (-99.0%) production. The EO of Carum carvi and ethyl acetate extract of Platycladus orientalis suppressed AFs B1 and G1 by more than 90.0%, without any obvious effect on fungal growth. The IC50 values of bioactive plants for AFs B1 and G1 were determined in the ranges of 90.6 to 576.2 and 2.8 to 61.9 µg/ml, respectively. Overall, results of the present study indicate the importance of AF contamination of trout feed as a risk factor for fish farming and thus, an urgent necessity for constant monitoring of trout feed for any unacceptable levels of AF contamination. Likewise, antifungal activities of bioactive plants introduced here would be an important contribution to explain the use of these plants as effective antimicrobial candidates to protect feeds from toxigenic fungus growth and subsequent AF contamination.